polianaliza1bz.pdf

(138 KB) Pobierz
341306832 UNPDF
Liczbyrzeczywiste
1. Wykaza¢,»edladowolnych a,b,c 2 R:
1.1. a 2 + b 2 ­ 2 ab 1.2. a 2 + b 2 + c 2 ­ ab + bc + ca
1.3.( a + b + c ) 2 ¬ 3( a 2 + b 2 + c 2 ) 1.4.
p a 2 + b 2 + c 2 ¬| a | + | b | + | c |
1.5.( a + b + c ) 2 ­ 3( ab + bc + ca ) 1.6. a 3 + b 3 + c 3 ­ 3 abc ( a + b + c ­ 0)
2. Wykaza¢,»enast¦puj¡celiczbynies¡liczbamiwymiernymi:
p
p
6 , 1+
p
2 , 3 p
4 , 3 p
2+
p
3
3. Wykaza¢,»edladowolnych a,b 2 R ,a<b istnieje c 2 R
a<c<b ,takie»e
1) c 2 Q 2) c 2 R \ Q
4. Znale¹¢sup A, inf A
4.1. A = { x 2 R: x 2 4 x +3 < 0 }
4.2. A = { x 2 R: || x 1 |− 1 | < 1 }
4.3. A = { x 2 R: x 3 2 x< 2 x 2 }
4.4. A = { x 2 R: x =sin t +cos t,t 2 [0 , ] }
4.5. A = { x 2 R: x = a sin t + b cos t,a,b> 0 ,t 2 R }
4.6. A = { x 2 R: x = n
n +1 ,n 2 N }
1
3 ,
341306832.011.png 341306832.012.png
 
4.7. A = { x 2 R: x = ( 1) n
n + 1+( 1) n
2 ,n 2 N }
4.8. A = { x 2 R: x = n 1
n cos 2 n
3 ,n 2 N }
4.9. A = { x 2 R: x = t
| t | +1 ,t 2 R }
t ,t 2 R ,t 6 =0 }
4.11. A = { x 2 R: x = m
n + n
m ,m,n 2 N ,m<n }
5. Sprawdzi¢,czy
5.1.sup( A [ B )=sup A +sup B
5.2.sup( A \ B )=sup A +inf B
5.3.sup( A + B )=sup A +sup B
5.4.sup A = inf( A )
5.5.sup A = sup A, ( > 0)
5.6.sup A = inf A, ( < 0)
5.7.sup( A [ B )=max[sup A, sup B ]
5.8.sup( A \ B )=min[sup A, sup B ]
5.9.sup( A + b )=sup A + b
5.10.sup ; =inf ; =0
2
4.10. A = { x 2 R: x = sin t
341306832.013.png
Funkcje
6. Znale¹¢dziedzin¦naturaln¡funkcji f ( x 2 R z 2 C).
6.1. f ( x )=arcsin(1 2 x 2 ) 6.2. f ( x )=log p 1 2sin3 x
s
q
x +1
x
6.3. f ( x )=
lg 1 2
6.4. f ( x )=
lg x (2 x )
6.5. f ( x )=arcsin 2 (2log x 1) 6.6. f ( x )=arcsin( x +1)+ p x x 2
6.7. f ( x )=
q
[ x ] x 6.8. f ( x )=log x +log( x )
6.9. f ( z )= 1
Rez + Imz + i 1
Rez Imz 6.10. f ( z )= q Rez −| z |
7. Zbada¢parzysto±¢(nieparzysto±¢)funkcji f .
7.1. f ( x )= x sin 2 x 7.2. f ( x )= x log | x |
7.3. f ( x )=2 | x |
7.4. f ( x )=arccos x
2
7.5. f ( x )=
p x
1+ x 2
7.6. f ( x )= x log 1 x
1+ x
8. Wyznaczy¢funkcjeodwrotnedodanychfunkcji:
8.1. y = 3 p x +1 8.2. y =2arcsin x +1
x
8.3. y =lg x 2 8.4. y =32 x +1 +2
8.5. y =arcsin(log x +1)+2 8.6. y = x
1+ | x |
8.7. y = | x | +2 x 8.8. y =2 x 2 x
3
341306832.001.png 341306832.002.png 341306832.003.png 341306832.004.png
9. Naszkicowa¢wykresyfunkcji:
9.1. f ( x )= x + | x | 9.2. f ( x )=
1
x
9.3. f ( x )= p 1 2 x 9.4. f ( x )= p 1 x 2
9.5. f ( x )=2sin3 x 9.6. f ( x )=sin x + | sin x |
9.7. f ( x )=arccos2 x arcsin2 x 9.8. f ( x )=arcsin x +arcsin( x 1)
9.9. f ( x )=cos(arccos x ) 9.10. f ( x )=arccos(cos x )
9.11. f ( x )=arctg 1
x
9.12. f ( x )=sin(arccos x )
9.13. f ( x )=log3 x 9.14. f ( x )=lg 2 x +lg 1 2 x
9.15. f ( x )= | log x 2 | 9.16. f ( x )=lg x x
9.17. f ( x )= | 2 | x 1 | 1 | 9.18. f ( x )=2 x 2
9.19. f ( x )= | lg | x | 2 | 9.20. f ( x )=lg 2 4 x +2 lg 4 x 2
10. Obliczy¢:
2 10.2. arccos( 1
2 ) 10.3. arctg( p
3)
10.4. sin(arccos 3
4 )10.5. cos(2arcsin 1
5 )10.6. sin(arctg 1
2 )
4
10.1. arcsin 1
341306832.005.png
 
Ci¡gi
11. Korzystaj¡czdefinicjigranicyzbada¢zbie»no±¢ci¡gu( a n ).
11.1. a n = n +2
2 n 1 11.2. a n = 1+( 1) n
n 11.3. a n = n
2 n + i n
n +1
p
2 + i 1
3
11.4. a n = n 2 n 11.5. a n =cos n 11.6. a n =(
2 ) n
12. Obliczy¢granice:
12.1. lim
n !1
( n +1) 2
2 n 2
12.2. lim
n !1
( n +1) 3 ( n 1) 3
( n +1) 2 +( n 1) 2
p
n 2 +1+ n ) 2
3 p
4 p
n 5 +2 3 p
n 2 +1
12.3. lim
n !1
12.4. lim
n !1
5 p
n 4 +2 2 p
n 6 +1
n 3 +1
12.5. lim
n !1
n +1 n 3
n 2
12.6. lim
n !1
( n +2) 10 n 10 20 n 9
n 8 2 n 4 +1
n 2 +1
n !1 ( p n +2 p n 1) 12.8. lim
n !1 ( p 2 n 2 3 n +1 n p 2)
q
n ( n p n 2 1) 12.10. lim
n !1 n p n ( p n +1+ p n 1 2 p n )
12.9. lim
n !1
12.11. lim
n !1
log n 2
log n 3
12.12. lim
n !1
log 3 n 2
log 2 n 3
12.13. lim
n !1
lg 2 n
log 4 n
12.14. lim
n !1
lg n 2
lg 3 n
12.15. lim
n !1
n !
( n +1)! n !
12.16. lim
n !1
1
n 2 (1+2+ ... + n )
1 2+3 4+ ... 2 n
!
12.17. lim
n !1
p n 2 +1
5
(
12.7. lim
341306832.006.png 341306832.007.png 341306832.008.png 341306832.009.png 341306832.010.png
Zgłoś jeśli naruszono regulamin