Beezer Robert A. - A First Course In Linear Algebra.pdf

(5002 KB) Pobierz
119290910 UNPDF
AFirstCourseinLinearAlgebra
by
RobertA.Beezer
DepartmentofMathematicsandComputerScience
UniversityofPugetSound
Version0.70
January5,2006
c 2004,2005,2006
Copyright c 2004,2005,2006RobertA.Beezer.
Permissionisgrantedtocopy,distributeand/ormodifythisdocumentunderthetermsof
theGNUFreeDocumentationLicense,Version1.2oranylaterversionpublishedbythe
FreeSoftwareFoundation;withtheInvariantSectionsbeing“Preface”,noFront-Cover
Texts,andnoBack-CoverTexts.Acopyofthelicenseisincludedinthesectionentitled
“GNUFreeDocumentationLicense”.
Mostrecentversioncanbefoundat http://linear.ups.edu/ .
Preface
Thistextbookisdesignedtoteachtheuniversitymathematicsstudentthebasicsof
thesubjectoflinearalgebra.Therearenoprerequisitesotherthanordinaryalgebra,
butitisprobablybestusedbyastudentwhohasthe“mathematicalmaturity”ofa
sophomoreorjunior.
Thetexthastwogoals:toteachthefundamentalconceptsandtechniquesofmatrix
algebraandabstractvectorspaces,andtoteachthetechniquesassociatedwithunder-
standingthedefinitionsandtheoremsformingacoherentareaofmathematics.Sothere
isanemphasisonworkedexamplesofnontrivialsizeandonprovingtheoremscarefully.
Thisbookiscopyrighted.Thismeansthatgovernmentshavegrantedtheauthora
monopoly—theexclusiverighttocontrolthemakingofcopiesandderivativeworksfor
manyyears(toomanyyearsinsomecases).Italsogivesotherslimitedrights,generally
referredtoas“fairuse,”suchastherighttoquotesectionsinareviewwithoutseeking
permission.However,theauthorlicensesthisbooktoanyoneunderthetermsoftheGNU
FreeDocumentationLicense(GFDL),whichgivesyoumorerightsthanmostcopyrights.
Looselyspeaking,youmaymakeasmanycopiesasyoulikeatnocost,andyoumay
distributetheseunmodifiedcopiesifyouplease.Youmaymodifythebookforyourown
use.Thecatchisthatifyoumakemodificationsandyoudistributethemodifiedversion,
ormakeuseofportionsinexcessoffairuseinanotherwork,thenyoumustalsolicense
thenewworkwiththeGFDL.Sothebookhaslotsofinherentfreedom,andnoone
isallowedtodistributeaderivativeworkthatrestrictsthesefreedoms.(Seethelicense
itselfforalltheexactdetailsoftheadditionalrightsyouhavebeengiven.)
Noticethatinitiallymostpeoplearestruckbythenotionthatthisbookisfree(the
Frenchwouldsaygratis,atnocost).Anditis.However,itismoreimportantthatthe
bookhasfreedom(theFrenchwouldsaylibert´e,liberty).Itwillnevergo“outofprint”
norwillthereeverbetrivialupdatesdesignedonlytofrustratetheusedbookmarket.
Thoseconsideringteachingacoursewiththisbookcanexamineitthoroughlyinadvance.
Addingnewexercisesornewsectionshasbeenpurposelymadeveryeasy,andthehope
isthatotherswillcontributethesemodificationsbackforincorporationintothebook,
forthebenefitofall.
Dependingonhowyoureceivedyourcopy,youmaywanttocheckforthelatest
version(andothernews)at http://linear.ups.edu/ .
TopicsThefirsthalfofthistext(throughChapterM[219])isbasicallyacoursein
matrixalgebra,thoughthefoundationofsomemoreadvancedideasisalsobeingformed
intheseearlysections.Vectorsarepresentedexclusivelyascolumnvectors(sincewealso
havethetypographicfreedomtoavoidwritingacolumnvectorinlineasthetransposeof
arowvector),andlinearcombinationsarepresentedveryearly.Spans,nullspacesand
i
119290910.001.png
ii
columnspacesarealsopresentedearly,simplyassets,savingmostoftheirvectorspace
propertiesforlater,sotheyarefamiliarobjectsbeforebeingscrutinizedcarefully.
Youcannotdoeverythingearly,soinparticularmatrixmultiplicationcomeslater
thanusual.However,withadefinitionbuiltonlinearcombinationsofcolumnvectors,
itshouldseemmorenaturalthantheusualdefinitionusingdotproductsofrowswith
columns.Andthisdelayemphasizesthatlinearalgebraisbuiltuponvectoradditionand
scalarmultiplication.Ofcourse,matrixinversesmustwaitformatrixmultiplication,but
thisdoesnotpreventnonsingularmatricesfromoccurringsooner.Vectorspaceproperties
arehintedatwhenvectorandmatrixoperationsarefirstdefined,butthenotionofa
vectorspaceissavedforamoreaxiomatictreatmentlater.Oncebasesanddimension
havebeenexploredinthecontextofvectorspaces,lineartransformationsandtheir
matrixrepresentationsfollow.Thegoalofthebookistogoasfarascanonicalforms
andmatrixdecompositionsintheCore,withlesscentraltopicscollectedinasectionof
Topics.
Linearalgebraisanidealsubjectforthenovicemathematicsstudenttolearnhow
todevelopatopicprecisely,withalltherigormathematicsrequires.Unfortunately,
muchofthisrigorseemstohaveescapedthestandardcalculuscurriculum,soformany
universitystudentsthisistheirfirstexposuretocarefuldefinitionsandtheorems,and
theexpectationthattheyfullyunderstandthem,tosaynothingoftheexpectationthat
theybecomeproficientinformulatingtheirownproofs.Wehavetriedtomakethistext
ashelpfulaspossiblewiththistransition.Everydefinitionisstatedcarefully,setapart
fromthetext.Likewise,everytheoremiscarefullystated,andalmosteveryonehasa
completeproof.Theoremsusuallyhavejustoneconclusion,sotheycanbereferenced
preciselylater.Definitionsandtheoremsarecatalogedinorderoftheirappearancein
thefrontofthebook,andalphabeticalorderintheindexattheback.Alongtheway,
therearediscussionsofsomemoreimportantideasrelatingtoformulatingproofs(Proof
Techniques),whichisadvicemostly.
OriginandHistoryThisbookistheresultoftheconfluenceofseveralrelatedevents
andtrends.
•AttheUniversityofPugetSoundweteachaone-semester,post-calculuslinear
algebracoursetostudentsmajoringinmathematics,computerscience,physics,
chemistryandeconomics.BetweenJanuary1986andJune2002,Itaughtthis
courseseventeentimes.FortheSpring2003semester,Ielectedtoconvertmy
coursenotestoanelectronicformsothatitwouldbeeasiertoincorporatethe
inevitableandnearly-constantrevisions.Centraltomynewnoteswasacollection
ofstockexamplesthatwouldbeusedrepeatedlytoillustratenewconcepts.(These
wouldbecometheArchetypes,ChapterA[685].)Itwasonlyashortleaptothen
decidetodistributecopiesofthesenotesandexamplestothestudentsinthetwo
sectionsofthiscourse.Asthesemesterworeon,thenotesbegantolooklesslike
notesandmorelikeatextbook.
•IusedthenotesagainintheFall2003semesterforasinglesectionofthecourse.
Simultaneously,thetextbookIwasusingcameoutinafifthedition.Anewchapter
Version0.70
119290910.002.png
iii
wasaddedtowardthestartofthebook,andafewadditionalexerciseswereadded
inotherchapters.Thisdemandedtheannoyanceofreworkingmynotesandlist
ofsuggestedexercisestoconformwiththechangednumberingofthechaptersand
exercises.IhadanalmostidenticalexperiencewiththethirdcourseIwasteaching
thatsemester.IalsolearnedthatinthenextacademicyearIwouldbeteaching
acoursewheremytextbookofchoicehadgoneoutofprint.Ifelttherehadto
beabetteralternativetohavingtheorganizationofmycoursesbuetedbythe
economicsoftraditionaltextbookpublishing.
•IhadusedT E XandtheInternetformanyyears,sotherewaslittletostandinthe
wayoftypesetting,distributingand“marketing”afreebook.Withrecreational
andprofessionalinterestsinsoftwaredevelopment,Ihadlongbeenfascinatedbythe
open-sourcesoftwaremovement,asexemplifiedbythesuccessofGNUandLinux,
thoughpublic-domainT E Xmightalsodeservemention.Obviously,thisbookisan
attempttocarryoverthatmodelofcreativeendeavortotextbookpublishing.
•AsasabbaticalprojectduringtheSpring2004semester,Iembarkedonthecurrent
projectofcreatingafreely-distributablelinearalgebratextbook.(Noticetheim-
pliedfinancialsupportoftheUniversityofPugetSoundtothisproject.)Mostof
thematerialwaswrittenfromscratchsincechangesinnotationandapproachmade
muchofmynotesoflittleuse.ByAugust2004Ihadwrittenhalfthematerial
necessaryforourMath232course.TheremaininghalfwaswrittenduringtheFall
2004semesterasItaughtanothertwosectionsofMath232.
•ItaughtasinglesectionofthecourseintheSpring2005semester,whilemycol-
league,ProfessorMartinJackson,graciouslytaughtanothersectionfromthecon-
stantlyshiftingsandsthatwasthisproject(version0.30).Hismanysuggestions
havehelpedimmeasurably.FortheFall2005semester,Itaughttwosectionsofthe
coursefromversion0.50.
However,muchofmymotivationforwritingthisbookiscapturedbythesentiments
expressedbyH.M.CundyandA.P.RolletintheirPrefacetotheFirstEditionofMath-
ematicalModels(1952),especiallythefinalsentence,
Thisbookwasbornintheclassroom,andarosefromthespontaneousinterest
ofaMathematicalSixthintheconstructionofsimplemodels.Adesireto
showthateveninmathematicsonecouldhavefunledtoanexhibitionof
theresultsandattractedconsiderableattentionthroughouttheschool.Since
thentheSherbornecollectionhasgrown,ideashavecomefrommanysources,
andwidespreadinteresthasbeenshown.Itseemsthereforedesirabletogive
permanentformtothelessonsofexperiencesothatotherscanbenefitby
themandbeencouragedtoundertakesimilarwork.
HowToUseThisBookChapters,Theorems,etc.arenotnumberedinthisbook,
butareinsteadreferencedbyacronyms.ThismeansthatTheoremXYZwillalwaysbe
TheoremXYZ,nomatterifnewsectionsareadded,orifanindividualdecidestoremove
Version0.70
Zgłoś jeśli naruszono regulamin