ELASTO-PLASTIC RESPONSE OF STEEL BRIDGE PIER BASE JOINT UNDER SEISMIC LOADING.pdf

(266 KB) Pobierz
209295875 UNPDF
Prof. Masahiro SAKANO, peg03032@nifty.com
Kansai University, Osaka, Japan
Yuji NISHIGAKI, one_life0617yuji@yahoo.co.jp
Graduate School of Engineering, Kansai University, Osaka, Japan
Yorkio KAWAKAMI, yoriko-kawakami@hanshin-exp.co.jp
Hanshin Expressway Corporation
ELASTO-PLASTIC RESPONSE OF STEEL BRIDGE PIER BASE JOINT
UNDER SEISMIC LOADING
SPR Ęś YSTO-PLASTYCZNA ODPOWIED Ź POŁ Ą CZENIA PODSTAWY KONSTRUKCJI NO Ś NEJ
MOSTU STALOWEGO NA OBCI Ąś ENIE SEJSMICZNE
Abstract In this study, the elasto-plastic response of a whole structure, including both superstructures and
substructures, was estimated by means of dynamic elasto-plastic finite element analysis, and the elasto-plastic
strain history at the top end of triangular ribs was estimated by means of static elasto-plastic finite element
analysis using the results obtained by dynamic elasto-plastic finite element analysis. As a result, displacement
response of the steel bridge pier can be estimated by means of dynamic elasto-plastic finite element analysis. The
maximum displacement response
d
Streszczenie W pracy analizowano spręŜysto-plastyczne zachowanie się całej konstrukcji obejmującej przęsła
oraz konstrukcję wsporczą za pomocą dynamicznej analizy metodą spręŜysto-plastycznych elementów
skończonych. Przebieg zmienności odkształceń spręŜysto-plastycznych na górnym wierzchołku trójkątnego
Ŝebra szacowano za pomocą analizy statycznej z wykorzystaniem spręŜysto-plastycznych elementów
skończonych wykorzystując wyniki otrzymane z analizy dynamicznej metodą spręŜysto-plastycznych
elementów skończonych. W efekcie przemieszczenia stalowej konstrukcji wsporczej mostu mogły być
oszacowane na podstawie analizy dynamicznej za pomocą spręŜysto-plastycznych elementów skończonych. W
przypadku współczynnika tłumienia 0,03 maksymalne przemieszczenie δmax wierzchołka filara wynosiło 207
mm, natomiast przemieszczenie minimalne δ min było –291 mm. Wykorzystując statyczną analizę spręŜysto-
plastyczną metodą elementów skończonych wykazano, iŜ maksymalny zakres zmienności odkształceń ∆ع ymax
górnego wierzchołka trójkątnych Ŝeber moŜe przekroczyć 20%.
1. Introduction
In the 1995 Hyogoken-Nanbu Earthquake, a rigid steel frame bridge pier was fractured at
its base joint, as shown in Fig. 1. Cracks were developed at the top of triangular ribs between
column and base plate, and connected one another. Eventually, more than a half section of the
column failed 1) . These cracks are presumed to have been initiated at the fillet weld toe on the
column side near the top end of the triangular ribs, and propagated from the northwest corner
to the northeast and southwest corners connecting each other. There is a possibility that
943
min is -291mm at the
top of column in the case of a 0.03 damping coefficient. By means of static elasto-plastic finite element analysis,
it was shown that there was a possibility that the maximum strain range (De ymax ) can exceed 20% at the top end
of triangular ribs.
d
max is 207mm and the minimum displacement response
209295875.023.png
extremely low cycle fatigue cracks could be developed by excessive cyclic loading during the
earthquake. In this study, the elasto-plastic response of the whole structure, including both
superstructures and substructures, was estimated by means of dynamic elasto-plastic finite
element analysis, and the elasto-plastic strain history at the top end of triangular ribs was
estimated by means of static elasto-plastic finite element analysis using the results obtained
through dynamic elasto-plastic finite element analysis.
Fig. 1. Cracks connecting the top ends of triangular ribs
2. Elasto-Plastic Response of a Whole Steel Pier
2.1 Analytical Method
Fig. 2 shows the analyzed steel bridge pier and superstructures. Fig. 3 shows its analytical
model. Dynamic elasto-plastic finite element analysis was conducted using a three-
dimensional beam element. The large-mass method was applied in order to shake the ground
directly using the seismic acceleration record (N-S direction) measured at the Osaka Gas
Fukiai Plant during the Hyogoken-Nanbu Earthquake (see Fig. 4). The beam element was
supposed to be a uniform box section, neglecting longitudinal and transverse stiffeners and
filled concrete. Material properties were supposed as follows;
Young’s modulus: 200GPa
Poisson’s ratio: 0.3
Unit mass of steel: 7850kg/m 3
Yield stress: 235MPa
The damping coefficient: 0.03 and 0.05
944
209295875.024.png
North Side
South Side
Section 1
Section 2
Section 3
Section 4
25
22
25
1561
20
1500
1450
1450
Section 1
SM570
Section 2
SS400
Section 5
Section 5
24
14
25
1500
14
1500
Section 6
Section 6
1450
1450
Section 3
SM490B
Section 4
SS400
25
25
3 4
26
1450
1450
G.L.
2300
15126
2000
1000
1000
19126
Section 5
SM490B
Section 6
SM400A)
Unit of length mm
Fig. 2. Analyzed steel bridge pier and superstructures
500
0
5
10
15
20
-500
Time (s)
Fig. 3. Analytical model of the steel pier and superstructures
North Side
South Side
1000
14126
100 0
15 0 0
Filled with Concrete
G.L.
Fractured
Base Joint
Fig. 4. Seismic acceleration record of N-S direction at the Osaka Gas Fukiai Plant
Front View
Side View
945
209295875.025.png 209295875.026.png 209295875.001.png 209295875.002.png 209295875.003.png 209295875.004.png 209295875.005.png 209295875.006.png 209295875.007.png 209295875.008.png 209295875.009.png 209295875.010.png 209295875.011.png 209295875.012.png
2.2 Analytical Results
Fig. 5 shows displacement response at the top of the north column. The horizontal axis
represents time t (s), and vertical axis represents relative displacement of the north column top
to its bottom. Solid and broken lines show the displacement response in cases of damping
coefficients 0.03 and 0.05, respectively. The maximum displacement response
d
max is 207mm
and the minimum displacement response
d
min is -291mm in the case of a 0.03 damping
coefficient, while
d max is 155mm and
d min is -233mm in the case of a 0.05 damping
coefficient.
300
200
100
0
-100
Damping
Coefficient
-200
0.03
0.05
-300
0
5
10
15
20
Time t (s)
Fig. 5. Displacement response at the top of the north column
3. Elasto-plastic Strain History of Steel Pier Base Joint with Triangular Ribs
3.1 Analytical Method
Fig. 6 shows an analytical model for the static analysis. Static elasto-plastic finite element
analysis was conducted using three-dimensional shell elements for the north column where
cracks were detected, and three-dimensional beam elements for the other beam and column
members. Fig. 7 shows the cyclic stress-strain curve 2) used in the static analysis. The base
plate at the bottom end of the column was completely restrained. The displacement obtained
in the dynamic elasto-plastic analysis was applied to the top of the column, and then elasto-
plastic strain history at the top end of the triangular ribs was estimated.
800
600
400
200
0
0
10
20
30
Fig. 6. Analytical model for static elasto-plastic finite element
Strain (%)
946
209295875.013.png 209295875.014.png 209295875.015.png 209295875.016.png 209295875.017.png
-8.7×10 -2
-12.5×10 -2
-1.1×10 -2
-4.9×10 -2
6.5×10 -2
2.7×10 -2
14.1×10 -2
10.3×10 -2
21.6×10 -2
17.8×10 -2
Fig. 7. Cyclic Stress-Strain curve used in the static elasto-plastic analysis
E
S
N
W
Beam Element
Shell Element Model
Fig. 8. Longitudinal strain distribution near the top end of the triangular ribs
20
10
0
-10
-20
4
6
8
10
12
Fig. 9. Strain history at the top of the northwest triangular rib
Time (s)
947
209295875.018.png 209295875.019.png 209295875.020.png 209295875.021.png 209295875.022.png
Zgłoś jeśli naruszono regulamin