AGH e-Fizyka 10 Relatywistyka i fizyka jądrowa.doc

(487 KB) Pobierz
28

 

e-Fizyka - internetowy wykład z podstaw fizyki

(prof. Zbigniew Kąkol, dr Jan Żukrowski)

http://uci.dydaktyka.agh.edu.pl/dydaktyka/fizyka/a_e_fizyka/index0.htm
Szczególna teoria względności (relatywistyka) i fizyka jądrowa

 

 

U1. Elementy szczególnej teorii względności

   Mechanika klasyczna oparta na zasadach dynamiki Newtona poprawnie opisuje zjawiska, w których prędkości ciał są małe w porównaniu z prędkością światła. Jednak w zjawiskach atomowych, jądrowych i w astrofizyce spotykamy się z prędkościami zbliżonymi do prędkości światła i wtedy zamiast mechaniki klasycznej musimy stosować mechanikę relatywistyczną opartą na szczególnej teorii względności opracowanej przez Einsteina. Mechanika klasyczna nie jest sprzeczna z mechaniką relatywistyczną, a stanowi jej szczególny przypadek (dla małych prędkości).

U1.1 Transformacja Galileusza

   Spróbujemy teraz opisać zjawiska widziane z dwóch różnych inercjalnych układów odniesienia, poruszających się względem siebie (rysunek U.1). W tym celu wyobraźmy sobie, obserwatora na Ziemi, który rejestruje dwa zdarzenia (na przykład dwie eksplozje) zachodzące na pewnej, jednakowej wysokości.

Rys. U1.1. Obserwacja zjawisk z dwóch poruszających się względem siebie układów odniesienia

Odległość między miejscami wybuchów wynosi, (według ziemskiego obserwatora) Δx, natomiast czas między wybuchami Δt. Te same dwa zdarzenia obserwowane są przez pasażera samolotu lecącego z prędkością V po linii prostej łączącej miejsca wybuchów. Względem lokalnego układu odniesienia związanego z lecącym samolotem różnica położeń wybuchów wynosi Δx’, a różnica czasu Δt’.

Porównajmy teraz spostrzeżenia obserwatorów na ziemi i w samolocie. Zróbmy to na przykład z pozycji obserwatora na ziemi, który próbuje opisać to co widzą pasażerowie samolotu. Jeżeli, pierwszy wybuch nastąpił w punkcie x1’ (wg samolotu), a drugi po czasie Δt, to w tym czasie samolot przeleciał drogę VΔt (względem obserwatora na Ziemi) i drugi wybuch został zaobserwowany w punkcie

 

(U1.1)

czyli

(U1.2)

Jednocześnie, ponieważ samolot leci wzdłuż linii łączącej wybuchy, to Δy = Δz = 0. Oczywistym wydaje się też, że Δt = Δt. Otrzymaliśmy więc wzory przekładające wyniki obserwacji jednego obserwatora na spostrzeżenia drugiego

 

(U1.3)

Te równania noszą nazwę transformacji Galileusza.
Sprawdźmy, czy stosując powyższe wzory do opisu doświadczeń, otrzymamy takie same wyniki, niezależnie od układu w którym to doświadczenie opisujemy. Jako przykład wybierzmy ciało poruszające wzdłuż osi x ruchem jednostajnie przyspieszonym z przyspieszeniem a.
W układzie nieruchomym prędkość chwilowa ciała wynosi

 

(U1.4)

Jego przyspieszenie jest stałe i równe a. Natomiast obserwator w pojeździe poruszającym się wzdłuż osi x ze stałą prędkością V rejestruje, że w czasie Δt’ ciało przebywa odległość Δx’. Zatem prędkość chwilowa ciała zmierzonego przez tego obserwatora wynosi

 

(U1.5)

Zgodnie z transformacją Galileusza Δx' = Δx - VΔt, oraz Δt' = Δt, więc

 

(U1.6)

Otrzymaliśmy prędkość względną jednego obiektu względem drugiego co jest wynikiem intuicyjnie oczywistym. Natomiast przyśpieszenie w układzie poruszającym się wynosi

 

(U1.7)

Widać, że w tym przypadku zastosowanie wzorów transformacji Galileusza daje wynik zgodny z doświadczeniem. Jednak nie jest to prawdą w każdym przypadku. Miedzy innymi stwierdzono, że ta transformacja zastosowana do równań Maxwella nie daje tych samych wyników dla omawianych układów inercjalnych. W szczególności z praw Maxwella wynika, że prędkość światła jest podstawową stałą przyrody i powinna być sama w każdym układzie odniesienia.
Oznacza to na przykład, że gdy impuls światła rozchodzący się w próżni w kierunku x jest obserwowany przez dwóch obserwatorów pokazanych na rysunku U.1.1 to zarówno obserwator nieruchomy jak poruszający się z prędkością V (względem pierwszego) zmierzą identyczną prędkość impulsu c = 2.998·108 m/s. Tymczasem zgodnie z transformacją Galileusza i ze zdrowym rozsądkiem powinniśmy otrzymać wartość c - V.

Wykonano szereg doświadczeń, w których próbowano podważyć równania Maxwella, a w szczególności próbowano pokazać, że prędkość światła, tak jak prędkość dźwięku zależy od układu odniesienia (stosuje się do transformacji Galileusza). Najsławniejsze z nich, to doświadczenie Michelsona-Morleya mające na celu wykrycie wpływu ruchu orbitalnego Ziemi na prędkość światła poprzez pomiar prędkości światła w kierunku prostopadłym i równoległym do ruchu Ziemi. Wszystkie te doświadczenia dały wynik negatywny i musimy uznać, że

 

Prawo, zasada, twierdzenie
Prędkość światła w próżni c = 2.998·108 m/s jest jednakowa we wszystkich inercjalnych układach odniesienia.

Rozpatrzmy teraz niektóre wnioski wynikające ze stałości prędkości światła.

 

U1.2 Dylatacja czasu

   Rozpatrzmy rakietę, w której znajduje się przyrząd wysyłający impuls światła z punktu A, który następnie odbity przez zwierciadło Z, odległe o d, powraca do tego punktu A, gdzie jest rejestrowany (rysunek U.1.2).

Rys. U1.2. Pomiar czasu przebiegu impulsu świetlnego w dwóch układach odniesienia

Czas Δt' jaki upływa między wysłaniem światła, a jego zarejestrowaniem przez obserwatora będącego w rakiecie (rysunek a) jest oczywiście równy Δt' = 2d/c. Teraz to samo zjawisko opisujemy z układu nieruchomego obserwatora (rysunek b), względem którego rakieta porusza się w prawo z prędkością V. Chcemy, w tym układzie, znaleźć czas Δt przelotu światła z punktu A do zwierciadła i z powrotem do A. Jak widać na rysunku U1.2 (b) światło przechodząc od punktu A do zwierciadła Z porusza się po linii o długości S

 

(U1.8)

Zatem czas potrzebny na przebycie drogi AZA (to jest dwóch odcinków o długości S) wynosi

 

(U1.9)

Czynnik Lorentza:

gdzie:

Przekształcając to równanie otrzymujemy ostatecznie

 

 

(U1.10)

Widzimy, że warunek stałości prędkości światła w różnych układach odniesienia może być spełniony tylko wtedy gdy, czas pomiędzy dwoma zdarzeniami obserwowanymi i mierzonymi z różnych układów odniesienia jest różny. W konsekwencji

 

Prawo, zasada, twierdzenie
Każdy obserwator stwierdza, że poruszający się zegar idzie wolniej niż identyczny zegar w spoczynku.

To zjawisko dylatacji czasu jest własnością samego czasu i dlatego spowolnieniu ulegają wszystkie procesy fizyczne gdy są w ruchu. Dotyczy to również reakcji chemicznych, więc i biologicznego starzenia się.
Dylatację czasu zaobserwowano doświadczalnie między innymi za pomocą nietrwałych cząstek. Cząstki takie przyspieszano do prędkości bliskiej prędkości światła i mierzono zmianę ich czasu połowicznego zaniku.

Ćwiczenie
Spróbuj obliczyć ile razy wzrośnie czas połowicznego zaniku cząstki poruszającej się z prędkością V = 0.99 c. Żeby sprawdzić czy można zarejestrować taką cząstkę oblicz jaką drogę s przebędzie ona w tym czasie, jeżeli czas połowicznego zaniku nieruchomej cząstki wynosi 10-8 s. Sprawdź obliczenia i wynik.

 

U1.3 Transformacja Lorentza

   Szukamy ponownie (jak w przypadku transformacji Galileusza) wzorów przekładających spostrzeżenia jednego obserwatora na obserwacje drugiego. Chcemy znaleźć transformację współrzędnych ale taką, w której obiekt poruszający się z prędkością równą c w układzie nieruchomym (x, y, z, t), również w układzie (x', y', z', t') poruszającym się z prędkością V wzdłuż osi x będzie poruszać się z prędkością c.
Transformacja współrzędnych, która uwzględnia niezależność prędkości światła od układu odniesienia ma postać

 

Zapis transformacji Lorentza
z czynnik g:

 

(U1.11)

 

gdzie β = V/c. Te równania noszą nazwę transformacji Lorentza. Omówimy teraz niektóre wnioski wynikające z transformacji Lorentza.

Jednoczesność

   Przyjmijmy, że według obserwatora w rakiecie poruszającej się wzdłuż osi x' (czyli także wzdłuż osi x, bo zakładamy, że te osie są równoległe) pewne dwa zdarzenia zachodzą równocześnie Δt' = t2' - t1' = 0, ale w rożnych miejscach x2' - x1' = Δx' ≠ 0. Sprawdźmy, czy te same zdarzanie są również jednoczesne dla obserwatora w spoczynku. Z transformacji Lorentza wynika, że

(U1.12)

oraz

...

Zgłoś jeśli naruszono regulamin