Petrophysical control on the mode of shearing in.pdf

(1618 KB) Pobierz
jur
Acta Geologica Polonica, Vol. 56 (2006), No. 2, pp. 159-170
Petrophysical control on the mode of shearing in
the sedimentary rocks and granitoid core of the
Tatra Mountains during Late Cretaceous nappe-
thrusting and folding, Carpathians, Poland
EDYTA JUREWICZ
Laboratory of Tectonics and Geological Mapping, Faculty of Geology, Warsaw University, Al. ˚wirki i Wigury 93,
PL 02-089 Warsaw, Poland. E-mail: edyta.jurewicz@uw.edu.pl
ABSTRACT:
J UREWICZ , E. 2006. Petrophysical control on the mode of shearing in the sedimentary rocks and granitoid core of the
Tatra Mountains during Late Cretaceous nappe-thrusting and folding, Carpathians, Poland. Acta Geologica Polonica ,
56 (2), 159-170. Warszawa.
In the Tatra Mts., the variability of structures within the granitoid rocks and their sedimentary complexes depends on the
physical properties of the rocks, particularly on their porosity and sensibility to dissolution. In the relatively homogeneous
and low porosity granitoid rocks, the shear surfaces are planar and smooth without damage zones around the shear
planes. They did not develop open spaces during shearing, which prevented fluid migration and hydrotectonic phenom-
ena. In the sedimentary rocks, mechanical, mostly bedding anisotropy controlled the geometry and morphology of the
shear zones. High porosity and recurring changing in pore fluid pressure determined the cyclic character of the thrust-
related shearing processes. Fluids appearing within the thrust-fault fissure played the key role in tectonic transport and
selective mass-loss processes (hydrotectonic phenomena). The mass-loss process was an effect of mechanical disintegra-
tion, pressure solution and cavitation erosion. The multistage character of the thrusting processes resulted in a gradual
increase in mass loss value and in geometrical complication of the shear zones. Within the Czerwone Wierchy Nappe, the
minimum value of the mass-loss estimated from a restored cross-section is in the range of 15-50%.
Key words: Hydrotectonic phenomena, Mass loss, Pressure solution, Cavitation erosion,
Tatra Mts.
INTRODUCTION
deformation structures within the crystalline core
formed under similar conditions and in the same stress
field and do not have their equivalents in the sedimenta-
ry complexes.
The tectonic style of nappes in the transitional zone
from the basement to the cover was often studied (e.g.
E PARD & E SCHER 1996, K WON & M ITRA 2006). The
change in the geometry of structures in the cover nappes
commonly reflects the inhomogeneous character of the
deformed rocks caused e.g. by palaeofaults responsible
In the Tatra Mts., Late Cretaceous thrust-napping
processes affected not only the rocks of the nappe units
but also the crystalline core and its autochthonous sedi-
mentary cover (e.g. A NDRUSOV 1968; K OTA¡SKI 1963;
B AC -M OSZASZWILI & al. 1984). Shear stress generated
due to basement shortening in the Fatricum and north
Veporicum was responsible for the nappe-thrusting
process in the Tatra Mts. (P LA ˇ IENKA & al. 1997). The
 
160
EDYTA JUREWICZ
for stress perturbation and formation of fault-related
folds (W ISSING & P FIFFNER 2003). The aim of this paper
is to show that the complex geometry of the nappe struc-
tures and thrust surfaces in the Tatra Mts. are insepara-
bly connected with lithological heterogeneities of the
deformed rocks, in particular with the presence of evapo-
rites (so-called Rauhwacke) as mechanically weak
detachment horizons at the basal thrusts of the nappes.
The specific pattern of the Tatra Mts. nappes, as
observed today, is a consequence of the hydrotectonic
phenomenon (J AROSZEWSKI 1982), which originated at
the base of the nappes and was associated with large-
scale mass-loss processes (J UREWICZ 2003). In earlier
interpretations (B AC -M OSZASZWILI & al . 1981), decrease
in mass in the vicinity of the thrust was connected with
pre-thrusting erosion, while the present author is of the
opinion that this process originated during thrusting due
to fluid migration associated with the hydrotectonic phe-
nomenon (J UREWICZ 2003, J UREWICZ & S ¸ABY 2004).
Mts. is composed of two older structural elements: the
metamorphic sequences of the Western Tatra Mts. and
the granitoid rocks of the High-Tatra Mts. (e.g. P UTI ˇ
1992; J ANÁK 1994). The crystalline core of the Tatra Mts.
is overlain by Mesozoic sedimentary sequences, which
correlate well with Austroalpine units (H ÄUSLER & al.
1993; P LA ˇ IENKA & al. 1997). Three groups of structural
units are composed of Mesozoic sedimentary strata
(K OTA¡SKI 1963): (1) the High-Tatric autochthonous sedi-
mentary cover; (2) two High-Tatric nappes: the Czerwone
Wierchy Nappe (divided into the Zdziary and Organy
units) and the Giewont Nappe; (3) the Sub-Tatric nappes
of Kríˇna and Choˇ. The nappe-thrusting and folding in
the Tatra Mts. are of approximately Late Cretaceous age
and were traditionally linked with the Mediterranean
orogenic phase (A NDRUSOV 1965). The Tatra massif is
overlapped by carbonate deposits of the so-called
Nummulitic Eocene and a post-orogenic Palaeogene fly-
sch sequence (e.g. B IEDA 1959; G EDL 1999). In the topo-
graphic sense the Tatra massif emerged at the surface due
to its Miocene rotational uplift around the W-E horizon-
tal axis (northerly tilting; S OKO¸OWSKI 1959; P IOTROWSKI
1978; B AC -M OSZASZWILI & al. 1984; J UREWICZ 2000a).
The youngest sediments in the area of the Tatra Mts. are
related to Pleistocene glaciations and Holocene erosion-
accumulation processes.
During Late Cretaceous–Eocene times, the
Carpathian area formed part of a larger Alpine-
Carpathian orogen formed by south-eastward subduction
GEOLOGICAL SETTING
The Tatra Mts. are the northernmost part of the
Central Western Carpathians. They are composed of a
Variscan crystalline basement and its sedimentary com-
plexes belonging to the Tatric-Fatric-Veporic nappe sys-
tem (Text-fig. 1) (A NDRUSOV 1968; M AHEL ’ 1986;
P LA ˇ IENKA & al. 1997). The crystalline core of the Tatra
Fig. 1. The main geological tectonic structures of the Tatra Mts. (after B AC -M OSZASZWILI & al . 1979)
391299157.433.png 391299157.444.png 391299157.455.png 391299157.001.png 391299157.012.png 391299157.023.png 391299157.034.png 391299157.045.png 391299157.056.png 391299157.067.png 391299157.078.png 391299157.089.png 391299157.100.png 391299157.111.png 391299157.122.png 391299157.133.png 391299157.144.png 391299157.155.png 391299157.166.png 391299157.177.png 391299157.188.png 391299157.199.png 391299157.210.png 391299157.221.png 391299157.232.png 391299157.243.png 391299157.254.png 391299157.265.png 391299157.276.png 391299157.287.png 391299157.298.png 391299157.309.png 391299157.320.png 391299157.331.png 391299157.342.png 391299157.353.png 391299157.364.png 391299157.375.png 391299157.386.png 391299157.397.png 391299157.408.png 391299157.411.png 391299157.412.png 391299157.413.png 391299157.414.png 391299157.415.png 391299157.416.png 391299157.417.png 391299157.418.png 391299157.419.png 391299157.420.png 391299157.421.png 391299157.422.png 391299157.423.png 391299157.424.png 391299157.425.png 391299157.426.png 391299157.427.png 391299157.428.png 391299157.429.png 391299157.430.png 391299157.431.png 391299157.432.png 391299157.434.png 391299157.435.png 391299157.436.png 391299157.437.png 391299157.438.png 391299157.439.png 391299157.440.png 391299157.441.png 391299157.442.png 391299157.443.png 391299157.445.png 391299157.446.png 391299157.447.png 391299157.448.png 391299157.449.png 391299157.450.png 391299157.451.png 391299157.452.png 391299157.453.png 391299157.454.png 391299157.456.png 391299157.457.png 391299157.458.png 391299157.459.png 391299157.460.png 391299157.461.png 391299157.462.png 391299157.463.png 391299157.464.png 391299157.465.png 391299157.002.png 391299157.003.png 391299157.004.png 391299157.005.png 391299157.006.png 391299157.007.png 391299157.008.png 391299157.009.png 391299157.010.png 391299157.011.png 391299157.013.png 391299157.014.png 391299157.015.png 391299157.016.png 391299157.017.png 391299157.018.png 391299157.019.png 391299157.020.png 391299157.021.png 391299157.022.png 391299157.024.png 391299157.025.png 391299157.026.png 391299157.027.png 391299157.028.png 391299157.029.png 391299157.030.png 391299157.031.png 391299157.032.png 391299157.033.png 391299157.035.png 391299157.036.png 391299157.037.png 391299157.038.png 391299157.039.png 391299157.040.png 391299157.041.png 391299157.042.png 391299157.043.png 391299157.044.png 391299157.046.png 391299157.047.png 391299157.048.png 391299157.049.png 391299157.050.png 391299157.051.png 391299157.052.png 391299157.053.png 391299157.054.png 391299157.055.png 391299157.057.png 391299157.058.png 391299157.059.png 391299157.060.png 391299157.061.png 391299157.062.png 391299157.063.png 391299157.064.png 391299157.065.png 391299157.066.png 391299157.068.png 391299157.069.png 391299157.070.png 391299157.071.png 391299157.072.png 391299157.073.png 391299157.074.png 391299157.075.png 391299157.076.png 391299157.077.png 391299157.079.png 391299157.080.png 391299157.081.png 391299157.082.png 391299157.083.png 391299157.084.png 391299157.085.png 391299157.086.png 391299157.087.png 391299157.088.png 391299157.090.png 391299157.091.png 391299157.092.png 391299157.093.png 391299157.094.png 391299157.095.png 391299157.096.png 391299157.097.png 391299157.098.png 391299157.099.png 391299157.101.png 391299157.102.png 391299157.103.png 391299157.104.png 391299157.105.png 391299157.106.png 391299157.107.png 391299157.108.png 391299157.109.png 391299157.110.png 391299157.112.png 391299157.113.png 391299157.114.png 391299157.115.png 391299157.116.png 391299157.117.png 391299157.118.png 391299157.119.png 391299157.120.png 391299157.121.png 391299157.123.png 391299157.124.png 391299157.125.png 391299157.126.png 391299157.127.png 391299157.128.png 391299157.129.png 391299157.130.png 391299157.131.png 391299157.132.png 391299157.134.png 391299157.135.png 391299157.136.png 391299157.137.png 391299157.138.png 391299157.139.png 391299157.140.png 391299157.141.png 391299157.142.png 391299157.143.png 391299157.145.png 391299157.146.png 391299157.147.png 391299157.148.png 391299157.149.png 391299157.150.png 391299157.151.png 391299157.152.png 391299157.153.png 391299157.154.png 391299157.156.png 391299157.157.png 391299157.158.png 391299157.159.png 391299157.160.png 391299157.161.png 391299157.162.png 391299157.163.png 391299157.164.png 391299157.165.png 391299157.167.png 391299157.168.png 391299157.169.png 391299157.170.png 391299157.171.png 391299157.172.png 391299157.173.png 391299157.174.png 391299157.175.png 391299157.176.png 391299157.178.png 391299157.179.png 391299157.180.png 391299157.181.png 391299157.182.png 391299157.183.png 391299157.184.png 391299157.185.png 391299157.186.png 391299157.187.png 391299157.189.png 391299157.190.png 391299157.191.png 391299157.192.png 391299157.193.png 391299157.194.png 391299157.195.png 391299157.196.png 391299157.197.png 391299157.198.png 391299157.200.png 391299157.201.png 391299157.202.png 391299157.203.png 391299157.204.png 391299157.205.png 391299157.206.png 391299157.207.png 391299157.208.png 391299157.209.png 391299157.211.png 391299157.212.png 391299157.213.png 391299157.214.png 391299157.215.png 391299157.216.png 391299157.217.png 391299157.218.png 391299157.219.png 391299157.220.png 391299157.222.png 391299157.223.png 391299157.224.png 391299157.225.png 391299157.226.png 391299157.227.png 391299157.228.png 391299157.229.png 391299157.230.png 391299157.231.png 391299157.233.png 391299157.234.png 391299157.235.png 391299157.236.png 391299157.237.png 391299157.238.png 391299157.239.png 391299157.240.png 391299157.241.png 391299157.242.png 391299157.244.png 391299157.245.png 391299157.246.png 391299157.247.png 391299157.248.png 391299157.249.png 391299157.250.png 391299157.251.png 391299157.252.png 391299157.253.png 391299157.255.png 391299157.256.png 391299157.257.png 391299157.258.png 391299157.259.png 391299157.260.png 391299157.261.png 391299157.262.png 391299157.263.png 391299157.264.png 391299157.266.png 391299157.267.png 391299157.268.png 391299157.269.png 391299157.270.png 391299157.271.png 391299157.272.png 391299157.273.png 391299157.274.png 391299157.275.png 391299157.277.png 391299157.278.png 391299157.279.png 391299157.280.png 391299157.281.png 391299157.282.png 391299157.283.png 391299157.284.png 391299157.285.png 391299157.286.png 391299157.288.png 391299157.289.png 391299157.290.png 391299157.291.png 391299157.292.png 391299157.293.png 391299157.294.png 391299157.295.png 391299157.296.png 391299157.297.png 391299157.299.png 391299157.300.png 391299157.301.png 391299157.302.png 391299157.303.png 391299157.304.png 391299157.305.png 391299157.306.png 391299157.307.png 391299157.308.png 391299157.310.png 391299157.311.png 391299157.312.png 391299157.313.png 391299157.314.png 391299157.315.png 391299157.316.png 391299157.317.png 391299157.318.png 391299157.319.png 391299157.321.png 391299157.322.png 391299157.323.png 391299157.324.png 391299157.325.png 391299157.326.png 391299157.327.png 391299157.328.png 391299157.329.png 391299157.330.png 391299157.332.png 391299157.333.png 391299157.334.png 391299157.335.png 391299157.336.png 391299157.337.png 391299157.338.png 391299157.339.png 391299157.340.png 391299157.341.png 391299157.343.png 391299157.344.png 391299157.345.png 391299157.346.png 391299157.347.png 391299157.348.png 391299157.349.png 391299157.350.png 391299157.351.png 391299157.352.png 391299157.354.png 391299157.355.png 391299157.356.png 391299157.357.png 391299157.358.png 391299157.359.png 391299157.360.png 391299157.361.png 391299157.362.png 391299157.363.png 391299157.365.png 391299157.366.png 391299157.367.png 391299157.368.png 391299157.369.png 391299157.370.png 391299157.371.png 391299157.372.png 391299157.373.png 391299157.374.png 391299157.376.png 391299157.377.png 391299157.378.png 391299157.379.png 391299157.380.png 391299157.381.png 391299157.382.png 391299157.383.png 391299157.384.png 391299157.385.png 391299157.387.png 391299157.388.png 391299157.389.png 391299157.390.png 391299157.391.png 391299157.392.png 391299157.393.png 391299157.394.png 391299157.395.png 391299157.396.png 391299157.398.png 391299157.399.png 391299157.400.png 391299157.401.png 391299157.402.png 391299157.403.png 391299157.404.png 391299157.405.png 391299157.406.png 391299157.407.png 391299157.409.png
 
PETROPHYSICAL CONTROL ON THE MODE OF SHEARING IN THE TATRA MOUNTAINS
161
of the Penninic Ocean (135–55 Ma) and a later collision
of the European and Adriatic continents (55-40 Ma;
N EM ˇ OK & N EM ˇ OK 1994; N EM ˇ OK & al. 1998). The age
of Alpine thrusting and folding is progressively younger
from south to north. The northward migration of nappes
from the hinterland to the foreland is well docu-
mented by the diachronous position of the pre-orogenic
flysch and the progressively younger ages of the sedi-
ments involved in the cover nappes towards the foreland
(L EFELD & al. 1985; P LA ˇ IENKA 1996, 2003). As in the
case of the crystalline core, the sedimentary cover was
also deformed during Alpine thrusting and folding but,
due to the different physical properties of the rocks, in a
different manner.
crystalline core and the sedimentary cover, the granitoids
of the High Tatra Mts. are much more useful than the
metamorphic sequences of the West Tatra Mts. Here, the
granitoid rocks are younger, and, thus less deformed.
The relatively homogeneous and isotropic structure of
the granitoids is responsible for the geometry of the
shear zone patterns.
With regard to their age, three groups of structures
can be distinguished within the granitoid core of the
High-Tatra Mts.: (a) pre-Alpine structures, (b) structures
produced by Late Cretaceous nappe-thrusting and (c)
structures brought about by the Neogene rotational
uplift of the Tatra massif (J UREWICZ 2002; J UREWICZ &
B AGI¡SKI 2005). Owing to the character and geometry of
the deformation, the nappe-thrusting related fault and
shear zones of the High-Tatra Mts. can be subdivided
into three groups: (a) steeply-dipping shear zones com-
prising mylonites or cataclasites (Text-figs 2A, B), (b)
low-angle slickensided faults (Text-fig. 2C) and (c) high-
angle slickensided faults (J UREWICZ 2000b, 2002).
G ROCHOCKA -P IOTROWSKA (1970) additionally distin-
guished the so-called “uniform slip zones” composed of
several parallel fault-planes, which can be included into
the latter (c) group of structures. The cataclastic and
mylonitic zones (a) formed, in general, during a pre-
Alpine deformation stage, and were reactivated during
the Neogene uplift as sinistral strike-slip faults or oblique
normal-slip faults (305/60) (J UREWICZ 2002; J UREWICZ &
B AGI¡SKI 2005). The high-angle slickensided faults (c)
are genetically related to the rotational uplift in the
Neogene (S OKO¸OWSKI 1959; P IOTROWSKI 1978; B AC -
M OSZASZWILI & al. 1984; J UREWICZ 2002). These kinds
of faults commonly occur within the sedimentary cover
and nappe units (Text-fig. 2D), thus their ages are
unequivocally younger than Late Cretaceous. The group
(b) comprises low-angle and smooth slickensided faults,
whose orientation points to their relationship with the
Late Cretaceous thrusting event (J UREWICZ 2000a).
Within the Tatra granitoid core, most thrust surfaces
and faults that can be linked with the Alpine folding are
characterised by shallow dips transformable into original
southern dips (i.e. preceding the Neogene tilting –
J UREWICZ 2000a). An analysis of tectonic transport
directions based on striae on such slickensides occurring
within the crystalline rocks of a tectonic cap (so-called
“Goryczkowa Island”) was made by B URCHART (1963).
The low-angle slickenside faults from the granitoid core
of the High-Tatra Mts. allowed a reconstruction of the
Late Cretaceous stress field to be made (J UREWICZ
2000a). The structural analysis of the crystalline core and
the nappe units which was proceeded by a back-tilting of
the Tatra block by c. 40°, to a position it occupied prior to
the Neogene rotation (B URCHART 1972; K RÁL ’ 1977;
TYPE AND ORIGIN OF SHEAR ZONES IN THE
TATRA MTS.
During Early to Late Cretaceous times, the thinned
continental crust of the basement of the Fatric-Tatric
Basin showed a lateral rheological heterogeneity
caused by lithospheric extension and rifting (cf.
V AUCHEZ & al. 1998). This favoured the formation of
low-angle anisotropy and consequently of major flat-
lying thrusts and detachments (see G HEBREAB 1998).
Above the roof thrust of the thrust system slightly dis-
turbed strata may have been present, whereas imbri-
cate structures and a hinterland dipping duplex could
have formed below (see B OYER & E LLIOT 1982).
Initially, assuming a simple model of folding, thrusting
and duplex formation could have been complicated by
the large lithological variability and rheological hete-
rogeneity of the deformed rocks. When the subduction
had completely consumed the basement of the more
southerly sedimentary zones, the crystalline basement
of the High-Tatric series also underwent compression
and thrust-related shearing. The fact that crystalline
rocks are also included in the nappes and that they
were detached at depths of at least several (c. 10) kilo-
meters (L EFELD & J ANKOWSKI 1987), suggests that the
detachment was preceded by compression, which
resulted in reverse faulting (e.g. B AC -M OSZASZWILI &
al. 1984). In some cases, reverse faults may have origi-
nated due to the changing of the sense of movement on
originally normal faults. This is evidenced e.g. by the
angle of 60° between the surface of the sedimentary
contact of Seisian sandstones with the crystalline rocks
and the Giewont Nappe thrust (B AC -M OSZASZWILI &
al. 1979; J UREWICZ 2005). During later stages of the
thrusting and folding the surface of this fault was
deformed (see below).
To compare the deformation structures within the
 
162
EDYTA JUREWICZ
P IOTROWSKI 1978; K OVÁC ˇ& al. 1994; J UREWICZ 2000a,
b), indicated the prevailing northern direction of tecto-
nic transport. The NW direction is older than the N
direction. This can be inferred both from the orientation
of slickenside of striae within the granitoid core
(J UREWICZ 2000a), as well as from the distribution of
bedding attitudes in the sedimentary complexes on
Lambert-Schmidt stereogram plots (J UREWICZ 2000 b).
Fig. 2. Deformation structures in the Tatra Mts. A – very fine-grained tectonic gouge within the shear zone in granitoid rocks, Bandzioch Cirque (160/60),
High Tatra Mts. (pre-Alpine deformation phase, reactivated during the Neogene). B – polished surface of the ductile-folded of foliation in granite
mylonites within the lower part of the shear zone within the Bandzioch Cirque (160/60), High Tatra Mts. (pre-Alpine deformation phase). C – low-angle
dipping fault plane coated with quartz and epidote (315/35), Zmarz∏a Pass, High Tatra Mts. (reverse fault forming during Late Cretaceous deformation
phase, preceding the Tatra rotational uplift). D – surface of a normal fault coated with quartz and chlorite (290/70), Seisian sandstone, NW slope of the
Ciemniak Mt., High-Tatric nappes (Neogene uplift related). E – stylolitic character of the contact between the Urgonian limestone of the High-Tatric
nappes (pale) and Anisian dolomite of the KríÏna nappes (dark); Sto∏y Hill (Late Cretaceous deformation phase). F – strongly folded dolomite mylonite
at the base of the Giewont Nappe, High-Tatric nappes (Alpine deformation phase)
391299157.410.png
PETROPHYSICAL CONTROL ON THE MODE OF SHEARING IN THE TATRA MOUNTAINS
163
The older NW striae were partly destroyed by younger,
more northely directed striae and, currently can be
observed on few slickenside planes. This may indicate
that either a gradual change of the maximum principal
1 ) stress orientation from the NW to N position took
place during thrusting, or that a counter-clockwise rota-
tion of the basement occurred under conditions of a sta-
ble stress field of constant orientation (J UREWICZ 2000b).
Other evidence for the basement counter-clockwise rota-
tion during Late Cretaceous folding and thrusting or for
the changing dirrection of thrusting was found from the
analysis of bedding attitudes. The latter analysis points to
the fact that the higher and earlier overthrust units (the
Kríˇna and High-Tatric nappes) show signs of a NW-
directed compression whereas the rocks of the later
deformed autochthonous sedimentary cover display a N
compression orientation (J UREWICZ 2000b). Structural
investigations within the crystalline massif and sedimen-
tary cover (J UREWICZ 2000a, b) made it possible to eval-
uate the angle of post-Turonian and pre-Eocene nappe-
folding counter-clockwise rotation around a vertical axis
to be c. ~45 o .
The en-bloc rotation of the basement during the
nappe-thrusting seems to have only slightly influenced
the orientation of the slickenside surfaces within the
crystalline core. Because the rocks of the crystalline core
were the last to be incorporated into the Late Cretaceous
thrusting, it can be assumed that their activation did not
require as many stages as in the case of the shear zones
within the sedimentary complexes. Likewise, they were
not subjected to deformations during the younger tec-
tonic events, in which the stress field did not favour pos-
sible reactivation of the Alpine slickenside surfaces; at
that stage they attained an almost semi-perpendicular
position to the plane of the shear stress.
The shear zones in the sedimentary complexes that
can be linked with nappe thrusting are typically devoid of
slickenside striae. Their surfaces are not planar, but of
complex morphology, and in some cases (e.g. in the floor
of the Zdziary Unit) show signs of folding. Deforma-
tional structures at the base of the nappes, ductile in
nature, are extremely variable and show signs of multiple
activation. They are thus not suitable for kinematic
analysis of the tectonic transport directions and recon-
struction of the stress field.
regard to their physical properties influencing the course
of the deformation processes. The granitoids of variable
mineral composition, including quartz, feldspars and
micas, show typically in laboratory tests a larger uniaxial
compression strength than the carbonate rocks (granite:
c. 60-230 MPa; carbonate: c. 15-130 MPa), and a dis-
tinctly lower and rather uniform porosity (granite: c. 0.4-
3.7%; carbonate: c. 0.1-30%) (P INI¡SKA 1997, 2000). The
key factor controlling the deformation processes in the
Tatra Mts. sedimentary rocks was lithological varia-
bility. The presence or absence of bedding in the car-
bonate rocks, variable susceptibility to pressure solution,
and different proportions of marl and clay intercalations
distinctly influenced the rock anisotropy. One of the
many reasons for the geometric complication of the tec-
tonic structures in the Tatra Mts. may have been thick-
ness changes due to sedimentation on rotated blocks.
Such a situation may be observed on the Mt. Kominy
Tylkowe in the High-Tatric autochthonous cover, where
K OTA¡SKI (1959) and R UBINKIEWICZ & L UDWINIAK
(2005) ascertained thickness reduction of the Lower and
Middle Triassic deposits by c. 30-50%. The High-Tatric
stratigraphic succession shows indirect evidence of
synsedimentary listric normal faulting associated with
the rotation of beds in the hanging wall from horizontal
to a steeper dip (J UREWICZ 2005). The formation of
listric faults resulted in the propagation of fault-related
synclines (see K HALIL & M C C LAY 2002) that developed
further at younger tectonic stages.
The granitoid core of the High-Tatra Mts. bears
numerous slickensides. Their surfaces are planar,
smooth and coated with quartz, epidote or chlorite.
Investigation of fluid inclusions in syn-kinematically
grown quartz slickenfibres on these faults indicated sta-
ble P-T conditions of the deformation. Quartz crystal-
lized under pressures of c. 1.45-1.7 kbar (145-170 MPa)
and temperatures of c. 212-254°C (J UREWICZ &
K OZ¸OWSKI 2003). These values allow estimation of the
depth of deformation along the Late Cretaceous faults at
c. 6-7 km. The pressure and temperature within the sedi-
mentary rocks that must have been deformed at shallow-
er depths, proved to be more variable. The temperatures
obtained from the shear zone within the High-Tatric
nappes, determined from chlorite and feldspar ther-
mometers, varied in the range 300-350 o C (J UREWICZ &
S ¸ABY 2004). The twinning in dolomite also indicates
temperatures in excess of 300 o C. In a similar situation, a
major dispersion of temperature values (213 to 471 o C)
and thus of pressure (20-540 MPa) was found by
M ILOVSKY ∂& al. (2003) from investigation of fluid inclu-
sions in the basal cataclasites of the MurᡠNappe, part
of the Silicicum cover nappe system (southern part of the
Central Western Carpathians). Thus the P-T conditions
COMPARATIVE ANALYSIS OF SHEAR ZONE
DEFORMATIONS IN THE TATRA MTS. GRANI-
TOID CORE AND SEDIMENTARY COMPLEXES
When compared to the sedimentary carbonate rocks,
the granitoids show both similarities and differences with
 
Zgłoś jeśli naruszono regulamin