attiny13.pdf

(3041 KB) Pobierz
ATtiny13
Features
High Performance, Low Power AVR ® 8-Bit Microcontroller
Advanced RISC Architecture
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Througput at 20 MHz
High Endurance Non-volatile Memory segments
– 1K Bytes of In-System Self-programmable Flash program memory
– 64 Bytes EEPROM
– 64 Bytes Internal SRAM
– Write/Erase cyles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C (see page 6 )
– Programming Lock for Self-Programming Flash & EEPROM Data Security
Peripheral Features
– One 8-bit Timer/Counter with Prescaler and Two PWM Channels
– 4-channel, 10-bit ADC with Internal Voltage Reference
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
I/O and Packages
– 8-pin PDIP/SOIC: Six Programmable I/O Lines
– 20-pad MLF: Six Programmable I/O Lines
Operating Voltage:
– 1.8 - 5.5V for ATtiny13V
– 2.7 - 5.5V for ATtiny13
Speed Grade
– ATtiny13V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATtiny13: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Industrial Temperature Range
Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 240µA
– Power-down Mode:
< 0.1µA at 1.8V
8-bit
Microcontroller
with 1K Bytes
In-System
Programmable
Flash
ATtiny13
ATtiny13V
Not recommended for new
designs. Use ATtiny13A.
Rev. 2535I–AVR–05/08
245850245.015.png 245850245.016.png 245850245.017.png
 
1. Pin Configurations
Figure 1-1. Pinout ATtiny13/ATtiny13V
8-PDIP/SOIC
(PCINT5/RESET/ADC0/dW) PB5
(PCINT3/CLKI/ADC3) PB3
(PCINT4/ADC2) PB4
GND
1
2
3
4
8
7
6
5
VCC
PB2 (SCK/ADC1/T0/PCINT2)
PB1 (MISO/AIN1/OC0B/INT0/PCINT1)
PB0 (MOSI/AIN0/OC0A/PCINT0)
20-QFN/MLF
(PCINT5/RESET/ADC0/dW) PB5
(PCINT3/CLKI/ADC3) PB3
DNC
DNC
(PCINT4/ADC2) PB4
1
2
3
4
5
15
14
13
12
11
VCC
PB2 (SCK/ADC1/T0/PCINT2)
DNC
PB1 (MISO/AIN1/OC0B/INT0/PCINT1)
PB0 (MOSI/AIN0/OC0A/PCINT0)
NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect
10-QFN/MLF
(PCINT5/RESET/ADC0/dW) PB5
(PCINT3/CLKI/ADC3) PB3
DNC
(PCINT4/ADC2) PB4
GND
1
2
3
4
5
10
9
8
7
6
VCC
PB2 (SCK/ADC1/T0/PCINT2)
DNC
PB1 (MISO/AIN1/OC0B/INT0/PCINT1)
PB0 (MOSI/AIN0/OC0A/PCINT0)
NOTE: Bottom pad should be soldered to ground.
DNC: Do Not Connect
2
ATtiny13
2535I–AVR–05/08
245850245.001.png
ATtiny13
1.1 Pin Descriptions
1.1.1
VCC
Digital supply voltage.
1.1.2
GND
Ground.
1.1.3
Port B (PB5:PB0)
Port B is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny13 as listed on page 54 .
1.1.4
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 18-1 on page
115 . Shorter pulses are not guaranteed to generate a reset.
The reset pin can also be used as a (weak) I/O pin.
3
2535I–AVR–05/08
245850245.002.png
2. Overview
The ATtiny13 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny13 achieves
throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power con-
sumption versus processing speed.
2.1 Block Diagram
Figure 2-1. Block Diagram
8-BIT DATABUS
STACK
POINTER
CALIBRATED
WATCHDOG
OSCILLATOR
INTERNAL
OSCILLATOR
SRAM
WATCHDOG
TIMER
TIMING AND
CONTROL
VCC
PROGRAM
COUNTER
MCU CONTROL
REGISTER
GND
MCU STATUS
REGISTER
PROGRAM
FLASH
TIMER/
COUNTER0
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
INTERRUPT
UNIT
X
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
Y
Z
CONTROL
LINES
ALU
DATA
EEPROM
STATUS
REGISTER
ADC /
ANALOG COMPARATOR
DATA REGISTER
PORT B
DATA DIR.
REG.PORT B
PORT B DRIVERS
RESET
CLKI
PB0-PB5
4
ATtiny13
2535I–AVR–05/08
245850245.003.png 245850245.004.png 245850245.005.png 245850245.006.png 245850245.007.png 245850245.008.png 245850245.009.png 245850245.010.png 245850245.011.png 245850245.012.png 245850245.013.png
ATtiny13
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The ATtiny13 provides the following features: 1K byte of In-System Programmable Flash, 64
bytes EEPROM, 64 bytes SRAM, 6 general purpose I/O lines, 32 general purpose working reg-
isters, one 8-bit Timer/Counter with compare modes, Internal and External Interrupts, a 4-
channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three soft-
ware selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The
Power-down mode saves the register contents, disabling all chip functions until the next Inter-
rupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules
except ADC, to minimize switching noise during ADC conversions.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core.
The ATtiny13 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Evaluation kits.
5
2535I–AVR–05/08
245850245.014.png
Zgłoś jeśli naruszono regulamin