2n4264-d.pdf

(169 KB) Pobierz
23103465 UNPDF
SEMICONDUCTOR TECHNICAL DATA
Order this document
by 2N4264/D
NPN Silicon
COLLECTOR
3
2
BASE
1
EMITTER
1
2 3
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
CASE 29–04, STYLE 1
TO–92 (TO–226AA)
Collector – Emitter Voltage
V CEO
15
Vdc
Collector – Base Voltage
V CBO
30
Vdc
Emitter – Base Voltage
V EBO
6.0
Vdc
Collector Current — Continuous
I C
200
mAdc
Total Device Dissipation @ T A = 25 ° C
Derate above 25 ° C
P D
350
2.8
mW
mW/ ° C
Total Device Dissipation @ T C = 25 ° C
Derate above 25 ° C
P D
1.0
8.0
Watts
mW/ ° C
Operating and Storage Junction
Temperature Range
T J , T stg
– 55 to +150
° C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
R JA
357
° C/W
Thermal Resistance, Junction to Case
R JC
125
°
C/W
ELECTRICAL CHARACTERISTICS (T A = 25 ° C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector – Emitter Breakdown Voltage
(I C = 1.0 mAdc, I B = 0)
V (BR)CEO
Vdc
15
Collector – Base Breakdown Voltage
(I C = 10 Adc, I E = 0)
V (BR)CBO
Vdc
30
Emitter – Base Breakdown Voltage
(I E = 10 Adc, I C = 0)
V (BR)EBO
Vdc
6.0
Base Cutoff Current
(V CE = 12 Vdc, V EB(off) = 0.25 Vdc)
(V CE = 12 Vdc, V EB(off) = 0.25 Vdc, T A = 100 ° C)
I BEV
m Adc
0.1
10
Collector Cutoff Current
(V CE = 12 Vdc, V EB(off) = 0.25 Vdc)
I CEX
nAdc
100
REV 2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1
W Motorola, Inc. 1997
23103465.011.png 23103465.012.png 23103465.013.png
ELECTRICAL CHARACTERISTICS (T A = 25 ° C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
ON CHARACTERISTICS
DC Current Gain
(I C = 1.0 mAdc, V CE = 1.0 Vdc)
(I C = 10 mAdc, V CE = 1.0 Vdc)
(I C = 10 mAdc, V CE = 1.0 Vdc, T A = – 55 ° C)
(I C = 30 mAdc, V CE = 1.0 Vdc)
(I C = 100 mAdc, V CE = 1.0 Vdc) (1)
(I C = 200 mAdc, V CE = 1.0 Vdc) (1)
h FE
25
40
20
40
30
20
160
Collector – Emitter Saturation Voltage
(I C = 10 mAdc, I B = 1.0 mAdc)
(I C = 100 mAdc, I B = 10 mAdc) (1)
V CE(sat)
Vdc
0.22
0.35
Base – Emitter Saturation Voltage
(I C = 10 mAdc, I B = 1.0 mAdc)
(I C = 100 mAdc, I B = 10 mAdc) (1)
V BE(sat)
Vdc
0.65
0.75
0.8
0.95
SMALL– SIGNAL CHARACTERISTICS
Current – Gain — Bandwidth Product
(I C = 10 mAdc, V CE = 10 Vdc, f = 100 MHz)
f T
300
MHz
Input Capacitance
(V EB = 0.5 Vdc, I C = 0, f = 1.0 MHz)
C ibo
8.0
pF
Output Capacitance
(V CB = 5.0 Vdc, I E = 0, f = 1.0 MHz, I E = 0)
C obo
4.0
pF
SWITCHING CHARACTERISTICS
Delay Time
(V CC = 10 Vdc, V EB(off) = 2.0 Vdc,
t d
8.0
ns
( CC , EB(off) ,
I C = 100 mAdc, I B1 = 10 mAdc) (Fig. 1, Test Condition C)
Rise Time
t r
15
ns
Storage Time
V CC = 10 Vdc, (I C = 10 mAdc, for t s )
(I C = 100 mA for t f )
t s
20
ns
(I C = 100 mA for t f )
(I B1 = –10 mA) (I B2 = 10 mA) (Fig. 1, Test Condition C)
Fall Time
t f
15
ns
Turn–On Time
(V CC = 3.0 Vdc, V EB(off) = 1.5 Vdc,
I C = 10 mAdc, I B1 = 3.0 mAdc) (Fig. 1, Test Condition A)
t on
25
ns
Turn–Off Time
(V CC = 3.0 Vdc, I C = 10 mAdc,
I B1 = 3.0 mAdc, I B2 = 1.5 mAdc) (Fig. 1, Test Condition A)
t off
35
ns
Storage Time
(V CC = 10 Vdc, I C = 10 mA,
I B1 = I B2 = 10 mAdc) (Fig. 1, Test Condition B)
t s
20
ns
Total Control Charge
(V CC = 3.0 Vdc, I C = 10 mAdc, I B = mAdc)
(Fig. 3, Test Condition A)
Q T
80
pC
1. Pulse Test: Pulse Width = 300 s, Duty Cycle = 2.0%.
Figure 1. Switching Time Equivalent Test Circuit
Test
Condition I C V CC
t on
t 1
t off
t 1
V CC
R S
W
3300
560
560
R C
270
960
96
C S(max)
pF
4
4
12
V BE(off)
V
–1.5
–2.0
V 1
V
10.55
6.35
V 2
V
–4.15
–4.65
–4.65
V 3
V
10.70
6.55
6.55
R C
mA
10
10
100
V
3
10
10
V 1
V 3
R B
0
0
V 2
A
B
C
V EB(off)
C S
<2 ns
<2 ns
PULSE WIDTH (t 1 ) = 300 ns DUTY CYCLE = 2%
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
23103465.014.png 23103465.001.png 23103465.002.png 23103465.003.png
CURRENT GAIN CHARACTERISTICS
100
70
2N4264
V CE = 1 V
50
T J = 125 ° C
25 ° C
30
–15 ° C
–55
°
C
20
10
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
200
I C , COLLECTOR CURRENT (mA)
Figure 2. Minimum Current Gain
270
W
3 V
t 1
8 pF
C < C OPT
+10 V
C = 0
D V
0
C S < 4 pF
C
C OPT
<1 ns
9.2 k W
PULSE WIDTH (t 1 ) = 5 m s DUTY CYCLE = 2%
TIME
Figure 3. Q T Test Circuit
Figure 4. Turn–Off Waveform
NOTE 1
When a transistor is held in a conductive state by a base current, I B ,
a charge, Q S , is developed or “stored” in the transistor. Q S may be
written: Q S = Q 1 + Q V + Q X .
Q 1 is the charge required to develop the required collector current.
This charge is primarily a function of alpha cutoff frequency. Q V is the
charge required to charge the collector–base feedback capacity. Q X is
excess charge resulting from overdrive, i.e., operation in saturation.
The charge required to turn a transistor “on” to the edge of saturation
is the sum of Q 1 and Q V which is defined as the active region charge,
Q A . Q A = I B1 t r when the transistor is driven by a constant current step
(I B1 ) and I B1 < <
I C
h FE .
If I B were suddenly removed, the transistor would continue to
conduct until Q S is removed from the active regions through an
external path or through internal recombination. Since the internal
recombination time is long compared to the ultimate capability of a
transistor, a charge, Q T , of opposite polarity, equal in magnitude, can
be stored on an external capacitor, C, to neutralize the internal charge
and considerably reduce the turn–off time of the transistor. Figure 3
shows the test circuit and Figure 4 the turn–off waveform. Given Q T
from Figure 13, the external C for worst–case turn–off in any circuit is:
C = Q T / D V, where D V is defined in Figure 3.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
3
23103465.004.png 23103465.005.png 23103465.006.png
“ON” CONDITION CHARACTERISTICS
1.0
0.8
2N4264
T J = 25 ° C
I C = 10 mA
50 mA
100 mA
200 mA
0.6
0.4
0.2
0
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
50
I B , BASE CURRENT (mA)
Figure 5. Collector Saturation Region
1.2
1.0
I C /I B = 10
T J = 25
1.0
°
C
MAX V BE(sat)
0.5
VC for V CE(sat)
(25 ° C to 125 ° C)
0.8
MIN V BE(sat)
0
(– 55 ° C to 25 ° C)
0.6
– 0.5
0.4
MAX V CE(sat)
– 1.0
(25 ° C to 125 ° C)
VB for V BE
(– 55
°
C to 25
°
C)
0.2
– 1.5
0
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
200
– 2.0
0
40
80
120
160
200
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 6. Saturation Voltage Limits
Figure 7. Temperature Coefficients
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data
23103465.007.png 23103465.008.png
DYNAMIC CHARACTERISTICS
200
200
100
V CC = 10 V
T J = 25
°
C
100
I C /I B = 10
T J = 25 ° C
T J = 125 ° C
70
70
V CC = 10 V
50
t d @ V EB(off) = 3 V
50
30
2 V
30
20
20
V CC = 3 V
10
0 V
10
7.0
7.0
5.0
5.0
1.0
2.0
5.0
10
20
50
100
200
1.0
2.0
5.0
10
20
50
100
200
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 8. Delay Time
Figure 9. Rise Time
50
200
T J = 25 ° C
T J = 125 ° C
V CC = 10 V
T J = 25
°
C
100
30
I C /I B = 20
T J = 125
°
C
I C /I B = 10
70
20
50
30
I C /I B = 20
20
10
I C /I B = 10
7.0
t s 4
t s – 1/8 t f
I B1 = I B2
10
7.0
5.0
1.0
2.0
5.0
10
20
50
100
200
5.0
1.0
2.0
5.0
10
20
50
100
200
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 10. Storage Time
Figure 11. Fall Time
10
1000
MAX
TYP
700
I C /I B = 10
T J = 25
500
C
T J = 125
°
7.0
C ibo
°
C
300
5.0
200
Q T
100
V CC = 3 V
70
50
C obo
3.0
V CC = 10 V
V CC = 3 V
Q A
30
2.0
20
0.1
0.2
0.5
1.0
2.0
5.0
10
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
200
REVERSE BIAS (Vdc)
I C , COLLECTOR CURRENT (mA)
Figure 12. Junction Capacitance
Figure 13. Maximum Charge Data
Motorola Small–Signal Transistors, FETs and Diodes Device Data
5
23103465.009.png 23103465.010.png
Zgłoś jeśli naruszono regulamin