IRL3102S.PDF

(129 KB) Pobierz
IRL3102S-revA
PD 9.1691A
PRELIMINARY
IRL3102S
HEXFET ® Power MOSFET
l Advanced Process Technology
l Surface Mount
l Optimized for 4.5V-7.0V Gate Drive
l Ideal for CPU Core DC-DC Converters
l Fast Switching
D
V DSS = 20V
G
R DS(on) = 0.013 W
S
I D = 61A
Description
These HEXFET Power MOSFETs were designed
specifically to meet the demands of CPU core DC-DC
converters. Advanced processing techniques
combined with an optimized gate oxide design results
in a die sized specifically to offer maximum efficiency
at minimum cost.
The D 2 Pak is a surface mount power package capable
of accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-
resistance in any existing surface mount package. The
D 2 Pak is suitable for high current applications because
of its low internal connection resistance and can
dissipate up to 2.0W in a typical surface mount
application.
2
D Pak
Absolute Maximum Ratings
Parameter
Max.
Units
I D @ T C = 25°C
Continuous Drain Current, V GS @ 4.5V
61
I D @ T C = 100°C
Continuous Drain Current, V GS @ 4.5V
39
A
I DM
Pulsed Drain Current
240
P D @T C = 25°C
Power Dissipation
89
W
Linear Derating Factor
0.71
W/°C
V GS
Gate-to-Source Voltage
± 10
V
E AS
Single Pulse Avalanche Energy
220
mJ
I AR
Avalanche Current
35
A
E AR
Repetitive Avalanche Energy
8.9
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T J
Operating Junction and
-55 to + 150
T STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
Typ.
Max.
Units
R q JC
Junction-to-Case
–––
1.4
R q JA
Junction-to-Ambient ( PCB Mounted,steady-state)**
–––
40
°C/W
9/16/97
11120687.010.png 11120687.011.png
IRL3102S
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V (BR)DSS Drain-to-Source Breakdown Voltage 20 ––– ––– V V GS = 0V, I D = 250µA
D V (BR)DSS / D T J Breakdown Voltage Temp. Coefficient ––– 0.016 ––– V/°C Reference to 25°C, I D = 1mA
R DS(on)
Static Drain-to-Source On-Resistance
––– ––– 0.015
V GS = 4.5V, I D = 37A
W
––– ––– 0.013
V GS = 7.0V, I D = 37A
V GS(th)
Gate Threshold Voltage
0.70 ––– –––
V
V DS = V GS , I D = 250µA
g fs
Forward Transconductance
36
––– –––
S
V DS = 16V, I D = 35A
I DSS
Drain-to-Source Leakage Current
––– ––– 25
µA
V DS = 20V, V GS = 0V
––– ––– 250
V DS = 10V, V GS = 0V, T J = 150°C
I GSS
Gate-to-Source Forward Leakage
––– ––– 100
nA
V GS = 10V
Gate-to-Source Reverse Leakage
––– ––– -100
V GS = -10V
Q g
Total Gate Charge
––– ––– 58
I D = 35A
Q gs
Gate-to-Source Charge
––– ––– 14
nC V DS = 16V
Q gd
Gate-to-Drain ("Miller") Charge
––– ––– 21
V GS = 4.5V, See Fig. 6
t d(on)
Turn-On Delay Time
–––
10 –––
V DD = 10V
t r
Rise Time
––– 130 –––
ns
I D = 35A
t d(off)
Turn-Off Delay Time
–––
80 –––
R G = 9.0 W, V GS = 4.5V
t f
Fall Time
––– 110 –––
Between lead,
and center of die contact
L S
Internal Source Inductance
––– 7.5 –––
nH
C iss
Input Capacitance
––– 2500 –––
V GS = 0V
C oss
Output Capacitance
––– 1000 –––
pF V DS = 15V
C rss
Reverse Transfer Capacitance
––– 360 –––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I S
Continuous Source Current
MOSFET symbol
D
––– –––
61
(Body Diode)
showing the
A
I SM
Pulsed Source Current
integral reverse
G
––– –––
240
(Body Diode)
p-n junction diode.
S
V SD
Diode Forward Voltage
––– ––– 1.3
V
T J = 25°C, I S = 37A, V GS = 0V
t rr
Reverse Recovery Time
––– 59
88
ns T J = 25°C, I F = 35A
Q rr
Reverse Recovery Charge
––– 110 160
nC di/dt = 100A/µs
t on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D )
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
I SD £ 35A, di/dt £ 100A/µs, V DD £ V (BR)DSS ,
T J £ 150°C
Starting T J = 25°C, L = 0.36mH
R G = 25 W , I AS = 35A.
Pulse width £ 300µs; duty cycle £ 2%.
Uses IRL3102 data and test conditions
** When mounted on FR-4 board using minimum recommended footprint.
For recommended footprint and soldering techniques refer to application note #AN-994.
R D = 0.28 W,
11120687.012.png 11120687.013.png
`
IRL3102S
1000
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
2.5V
1000
VGS
15V
12V
10V
8.0V
6.0V
4.0V
3.0V
2.5V
VGS
TOP 10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
VGS
TOP 10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
TOP
TOP
BOTTOM
BOTTOM
100
100
2.5V
2.5V
20µs PULSE WIDTH
T = 25 C
°
20µs PULSE WIDTH
T = 150 C
°
10
10
0.1
1
10
100
0.1
1
10
100
V , Drain-to-Source Voltage (V)
DS
V , Drain-to-Source Voltage (V)
DS
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
I =
D
61A
T = 25 C
J
°
1.5
100
T = 150 C
J
°
1.0
10
0.5
V = 15V
20µs PULSE WIDTH
DS
V =
GS
4.5V
1
0.0
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100 120 140 160
V , Gate-to-Source Voltage (V)
T , Junction Temperature( C)
J
°
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
J
J
GS
11120687.001.png 11120687.002.png 11120687.003.png
IRL3102S
4200
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
15
I =
D 35A
GS
iss
C SHORTED
gs
gd , ds
3600
rss
gd
V = 16V
DS
+ C
oss
ds
gd
12
3000
C iss
2400
9
1800
C oss
6
1200
3
C rss
600
0
1
10
100
0
0
20
40
60
80
100
V , Drain-to-Source Voltage (V)
Q , Total Gate Charge (nC)
G
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED
BY R DS(on)
100
100
100us
T = 150 C
J
°
T = 25 C
J
°
1ms
10
10
10ms
T
C
= 25 C
°
°
T
= 150 C
V = 0 V
GS
J
Single Pulse
1
1
0.2
0.8
1.4
2.0
2.6
1
10
100
V ,Source-to-Drain Voltage (V)
V , Drain-to-Source Voltage (V)
DS
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
DS
SD
11120687.004.png 11120687.005.png
IRL3102S
70
500
I D
60
TOP
16A
22A
35A
400
BOTTOM
50
40
300
30
200
20
100
10
0
0
25
50
75
100
125
150
25
50
75
100
125
150
°
T , Case Temperature ( C)
Starting T , Junction Temperature( C)
J
°
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Maximum Avalanche Energy
Vs. Drain Current
10
1
D = 0.50
0.20
0.10
P
DM
0.1
0.05
t
1
0.02
SINGLE PULSE
(THERMAL RESPONSE)
0.01
2
Notes:
1. Duty factor D = t / t
2. Peak T = P
1
2
J
DM
x Z
thJC
+ T
C
0.01
0.00001
0.0001
0.001
0.01
0.1
1
t , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
C
t
1
11120687.006.png 11120687.007.png 11120687.008.png 11120687.009.png
Zgłoś jeśli naruszono regulamin