2n4918-d.pdf

(115 KB) Pobierz
2N4918
ON Semiconductor
Medium-Power Plastic PNP
Silicon Transistors
2N4918
thru
2N4920
*
...designed for driver circuits, switching, and amplifier
applications. These high–performance plastic devices feature:
*ON Semiconductor Preferred Device
Low Saturation Voltage —
V CE(sat) = 0.6 Vdc (Max) @ I C = 1.0 Amp
3 AMPERE
GENERAL–PURPOSE
POWER TRANSISTORS
40–80 VOLTS
30 WATTS
Excellent Power Dissipation Due to Thermopad Construction —
P D = 30 W @ T C = 25
C
Excellent Safe Operating Area
Gain Specified to I C = 1.0 Amp
Complement to NPN 2N4921, 2N4922, 2N4923
*MAXIMUM RATINGS
Ratings ÎÎÎ
Symbol ÎÎÎÎ
2N4918 ÎÎÎ
2N4919 ÎÎÎÎ
2N4920 ÎÎÎ
Unit
Collector–Emitter Voltage ÎÎÎ
V CEO ÎÎÎÎ
40 ÎÎÎ
60 ÎÎÎÎ
80 ÎÎÎ
Vdc
Collector–Base Voltage ÎÎÎ
V CB ÎÎÎÎ
40 ÎÎÎ
60 ÎÎÎÎ
80 ÎÎÎ
Vdc
CASE 77–09
TO–225AA TYPE
Emitter–Base Voltage
V EB ÎÎÎÎÎÎÎÎÎ
5.0
Vdc
Collector Current — Continuous (1) ÎÎÎ
I C * ÎÎÎÎÎÎÎÎÎ
1.0
3.0
Adc
Base Current
I B ÎÎÎÎÎÎÎÎÎ
1.0
Adc
Total Power Dissipation @ T C = 25
°
C
P D ÎÎÎÎÎÎÎÎÎ
30
0.24
Watts
W/
Derate above 25
C
C
Operating & Storage Junction
Temperature Range
T J , T stg ÎÎÎÎÎÎÎÎÎ
–65 to +150 ÎÎÎ
C
THERMAL CHARACTERISTICS (2)
Characteristic
Symbol ÎÎÎÎÎÎ
Max
Unit
Thermal Resistance, Junction to Case ÎÎÎÎÎ
q JC
4.16
C/W
*Indicates JEDEC Registered Data for 2N4918 Series.
(1) The 1.0 Amp maximum I C value is based upon JEDEC current gain requirements.
The 3.0 Amp maximum value is based upon actual current–handling capability of the
device (See Figure 5).
(2) Recommend use of thermal compound for lowest thermal resistance.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
W Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 9
1
Publication Order Number:
2N4918/D
23102312.009.png 23102312.010.png
2N4918 thru 2N4920
40
30
20
10
0 25
50
75
100
125
150
T C , CASE TEMPERATURE ( ° C)
Figure 1. Power Derating
http://onsemi.com
2
23102312.011.png
2N4918 thru 2N4920
ELECTRICAL CHARACTERISTICS (T C = 25 C unless otherwise noted)
Characteristic
Symbol ÎÎÎ
Min ÎÎÎÎ
Max ÎÎÎ
Unit
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (1)
(I C = 0.1 Adc, I B = 0)
V CEO(sus) ÎÎÎ
Vdc
2N4918
2N4919
2N4920
40
60
80
Collector Cutoff Current
(V CE = 20 Vdc, I B = 0)
I CEO
mAdc
2N4918
0.5
0.5
0.5
(V CE = 30 Vdc, I B = 0)
2N4919
(V CE = 40 Vdc, I B = 0)
2N4920
Collector Cutoff Current
(V CE = Rated V CEO , V BE(off) = 1.5 Vdc)
(V CE = Rated V CEO , V BE(off) = 1.5 Vdc, T C = 125 C)
I CEX
mAdc
0.1
0.5
Collector Cutoff Current
(V CB = Rated V CB , I E = 0)
I CBO ÎÎÎ
ÎÎÎÎ
0.1 ÎÎÎ
mAdc
Emitter Cutoff Current
(V BE = 5.0 Vdc, I C = 0)
I EBO
1.0
mAdc
ON CHARACTERISTICS
DC Current Gain (1)
(I C = 50 mAdc, V CE = 1.0 Vdc)
(I C = 500 mAdc, V CE = 1.0 Vdc)
(I C = 1.0 Adc, V CE = 1.0 Vdc)
h FE
40
30
10
150
Collector–Emitter Saturation Voltage (1)
(I C = 1.0 Adc, I B = 0.1 Adc)
V CE(sat) ÎÎÎ
ÎÎÎÎ
0.6 ÎÎÎ
Vdc
Base–Emitter Saturation Voltage (1)
(I C = 1.0 Adc, I B = 0.1 Adc)
V BE(sat) ÎÎÎ
ÎÎÎÎ
1.3 ÎÎÎ
Vdc
Base–Emitter On Voltage (1)
(I C = 1.0 Adc, V CE = 1.0 Vdc)
V BE(on)
1.3
Vdc
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product (I C = 250 mAdc, V CE = 10 Vdc, f = 1.0 MHz)
f T
3.0 ÎÎÎÎ
ÎÎÎ
MHz
Output Capacitance (V CB = 10 Vdc, I E = 0, f = 100 kHz)
C ob
ÎÎÎÎ
100 ÎÎÎ
pF
Small–Signal Current Gain (I C = 250 mAdc, V CE = 10 Vdc, f = 1.0 kHz)
h fe
25 ÎÎÎÎ
ÎÎÎ
*Indicates JEDEC Registered Data.
(1) Pulse Test: PW
300
m
s, Duty Cycle
2.0%
V BE(off)
5.0
V in
0
V CC
3.0
V CC = 30 V
I C /I B = 20
I C /I B = 10, UNLESS NOTED
R C
T J = 25 ° C
T J = 150 ° C
APPROX
-11 V
2.0
V in
SCOPE
t 1
R B
C jd <<C eb
1.0
0.7
0.5
V CC = 30 V
t r
t 2
APPROX 9.0 V
+4.0 V
V CC = 60 V
0.3
0.2
R B and R C
varied to
obtain desired
current levels
t d
V CC = 60 V
V BE(off) = 2.0 V
V in
0
t 1 < 15 ns
100 < t 2 < 500 m s
t 3 < 15 ns
DUTY CYCLE 9 2.0%
0.1
V CC = 30 V
V BE(off) = 0
APPROX
-11 V
0.07
t 3
0.05
10
20 30
50 70 100
200
300
500
700 1000
TURN-OFF PULSE
I C , COLLECTOR CURRENT (mA)
Figure 2. Switching Time Equivalent Test Circuit
Figure 3. Turn–On Time
http://onsemi.com
3
23102312.012.png
2N4918 thru 2N4920
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
P (pk)
0.1
0.07
0.05
0.05
q JC (t) = r(t) q JC
q JC = 4.16 ° C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t 1
T J(pk) - T C = P (pk) q JC (t)
0.01
t 1
0.03
0.02
SINGLE PULSE
t 2
DUTY CYCLE, D = t 1 /t 2
0.01 0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0
5.0
10
20 30
50
100
200 300
500
1000
t, TIME (ms)
Figure 4. Thermal Response
10
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate I C – V CE
operation i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 150
1.0 ms
100 m s
5.0 ms
5.0
2.0
T J = 150 ° C
dc
C; T C is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided T J(pk)
1.0
0.5
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALLY LIMIT @ T C = 25 ° C
C. At high case temperatures, thermal limitations
will reduce the power that can be handled to values less than
the limitations imposed by second breakdown.
150
0.2
PULSE CURVES APPLY BELOW
RATED V CEO
0.1
1.0
2.0 3.0
5.0
7.0
10
20
30
50
70
100
V CE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 5. Active–Region Safe Operating Area
5.0
5.0
3.0
I C /I B = 20
3.0
I C /I B = 20
T J = 25 ° C
T J = 150 ° C
2.0
2.0
V CC = 30 V
I B1 = I B2
1.0
I C /I B = 10
1.0
0.7
0.7
0.5
0.5
I C /I B = 10
0.3
0.2
t s 4 = t s - 1/8 t f
0.3
0.2
T J = 25 ° C
T J = 150 ° C
0.1
I B1 = I B2
0.1
0.07
0.07
0.05
10
20 30
50 70
100
200 300
500 700 1000
0.05
10
20 30
50 70
100
200 300
500 700 1000
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 6. Storage Time
Figure 7. Fall Time
http://onsemi.com
4
23102312.001.png 23102312.002.png 23102312.003.png 23102312.004.png
2N4918 thru 2N4920
TYPICAL DC CHARACTERISTICS
1000
1.0
700
V CE = 1.0 V
I C = 0.1 A
0.25 A
0.5 A
1.0 A
500
0.8
T J = 150 ° C
300
200
0.6
25 ° C
100
70
T J = 25 ° C
-55 ° C
0.4
50
30
20
0.2
10
2.0
3.0 5.0
10
20 30
50
100
200 300 500
1000
2000
0
0.2
0.3 0.5
1.0
2.0
3.0
5.0
10
20
30
50
100
200
I C , COLLECTOR CURRENT (mA)
I B , BASE CURRENT (mA)
Figure 8. Current Gain
Figure 9. Collector Saturation Region
10 8
1.5
I C = 10 I CES
V CE = 30 V
10 7
1.2
T J = 25 ° C
10 6
I C 9 I CES
0.9
V BE(sat) @ I C /I B = 10
10 5
I C = 2x I CES
0.6
V BE @ V CE = 2.0 V
I CES VALUES
OBTAINED FROM
FIGURE 13
10 4
0.3
V CE(sat) @ I C /I B = 10
10 3
0
30
60
90
120
150
0
2.0
3.0
5.0
10
20 30 50
100 200 300
500 1000
2000
T J , JUNCTION TEMPERATURE ( ° C)
I C , COLLECTOR CURRENT (mA)
Figure 10. Effects of Base–Emitter Resistance
Figure 11. “On” Voltage
10 2
+2.5
10 1
+2.0
+1.5
*APPLIES FOR I C /I B <
h FE @V CE 1.0V
2
T J = 150 ° C
+1.0
10 0
T J = 100 ° C to 150 ° C
+0.5
0
-0.5
-1.0
-1.5
-2.0
-2.5
10 -1
* q VC FOR V CE(sat)
T J = -55 ° C to +100 ° C
100 ° C
10 -2
I C = I CES
10 4
V CE = 30 V
q VB FOR V BE
25 ° C
FORWARD
10 3
REVERSE
-0.2
-0.1
0
+0.1
+0.2
+0.3
+0.4
+0.5
2.0
3.0 5.0
10
20 30 50
100 200
300 500 1000
2000
V BE , BASE-EMITTER VOLTAGE (VOLTS)
I C , COLLECTOR CURRENT (mA)
Figure 12. Collector Cut–Off Region
Figure 13. Temperature Coefficients
http://onsemi.com
5
23102312.005.png 23102312.006.png 23102312.007.png 23102312.008.png
 
Zgłoś jeśli naruszono regulamin