Intro to String Theory - G. terHooft.pdf
(
454 KB
)
Pobierz
53231427 UNPDF
INTRODUCTIONTOSTRINGTHEORY
¤
version14-05-04
Gerard’tHooft
InstituteforTheoreticalPhysics
UtrechtUniversity,Leuvenlaan4
3584CCUtrecht,theNetherlands
and
SpinozaInstitute
Postbox80.195
3508TDUtrecht,theNetherlands
e-mail:
g.thooft@phys.uu.nl
internet:http://www.phys.uu.nl/~thooft/
Contents
1StringsinQCD. 4
1.1Thelineartrajectories.............................. 4
1.2TheVenezianoformula.............................. 5
2Theclassicalstring. 7
3Openandclosedstrings. 11
3.1TheOpenstring.................................11
3.2Theclosedstring.................................12
3.3Solutions.....................................12
3.3.1Theopenstring. ............................12
3.3.2Theclosedstring.............................13
3.4Thelight-conegauge...............................14
3.5Constraints....................................15
3.5.1foropenstrings:.............................16
¤
Lecturenotes2003and2004
1
3.5.2forclosedstrings:............................16
3.6Energy,momentum,angularmomentum....................17
4Quantization. 18
4.1Commutationrules................................18
4.2Theconstraintsinthequantumtheory.....................19
4.3TheVirasoroAlgebra..............................20
4.4Quantizationoftheclosedstring.......................23
4.5Theclosedstringspectrum...........................24
5Lorentzinvariance. 25
6Interactionsandvertexoperators. 27
7BRSTquantization. 31
8ThePolyakovpathintegral.Interactionswithclosedstrings. 34
8.1Theenergy-momentumtensorfortheghostfields...............36
9
T
-Duality. 38
9.1Compactifyingclosedstringtheoryonacircle.................39
9.2
T
-dualityofclosedstrings............................40
9.3
T
-dualityforopenstrings............................41
9.4Multiplebranes..................................42
9.5Phasefactorsandnon-coinciding
D
-branes. .................42
10Complexcoordinates. 43
11Fermionsinstrings. 45
11.1Spinningpointparticles.............................45
11.2ThefermionicLagrangian............................46
11.3Boundaryconditions...............................49
11.4Anticommutationrules.............................51
11.5Spin........................................52
11.6Supersymmetry..................................53
11.7Thesupercurrent. ...............................54
2
11.8Thelight-conegaugeforfermions.......................56
12TheGSOProjection. 58
12.1Theopenstring. ................................58
12.2Computingthespectrumofstates. ......................61
12.3Stringtypes....................................63
13Zeromodes 65
13.1Fieldtheoriesassociatedtothezeromodes. .................68
13.2Tensorfieldsand
D
-branes. ..........................71
13.3
S
-duality.....................................73
14MiscelaneousandOutlook. 75
14.1Stringdiagrams.................................75
14.2Zeroslopelimit.................................76
14.2.1TypeIItheories.............................76
14.2.2TypeItheory..............................77
14.2.3Theheterotictheories.........................77
14.3Stringsonbackgrounds.............................77
14.4Coordinateson
D
-branes.Matrixtheory....................78
14.5Orbifolds.....................................78
14.6Dualities.....................................79
14.7Blackholes...................................79
14.8Outlook.....................................79
3
1.StringsinQCD.
1.1.Thelineartrajectories.
Inthe’50’s,mesonsandbaryonswerefoundtohavemanyexcitedstates,calledres-
onances,andinthe’60’s,theirscatteringamplitudeswerefoundtoberelatedtothe
so-calledReggetrajectories:
J
=
®
(
s
),where
J
istheangularmomentumand
s
=
M
2
,
thesquareoftheenergyinthecenterofmassframe.Aresonanceoccursatthose
s
values
where
®
(
s
)isanonnegativeinteger(mesons)oranonnegativeintegerplus
1
2
(baryons).
Thelargest
J
valuesatgiven
s
formedtheso-called‘leadingtrajectory’.Experimentally,
itwasdiscoveredthattheleadingtrajectorieswerealmostlinearin
s
:
®
(
s
)=
®
(0)+
®
0
s:
(1.1)
Furthermore,therewere‘daughtertrajectories’:
®
(
s
)=
®
(0)
¡n
+
®
0
s:
(1.2)
where
n
appearedtobeaninteger.
®
(0)dependsonthequantumnumberssuchas
strangenessandbaryonnumber,but
®
0
appearedtobeuniversal,approximately1GeV
¡
2
.
Ittooksometimebeforethesimplequestionwasasked:supposeamesonconsistsof
twoquarksrotatingaroundacenterofmass.Whatforcelawcouldreproducethesimple
behaviorofEq.(1.1)?Assumethatthequarksmovehighlyrelativistically(whichis
reasonable,becausemostoftheresonancesaremuchheavierthanthelightest,thepion).
Letthedistancebetweenthequarksbe
r
.Eachhasatransversemomentum
p
.Then,if
weallowourselvestoignoretheenergyoftheforcefieldsthemselves(andput
c
=1),
s
=
M
2
=(2
p
)
2
:
(1.3)
Theangularmomentumis
J
=2
p
r
2
=
pr:
(1.4)
Thecentripetalforcemustbe
F
=
pc
r=
2
=
2
p
r
:
(1.5)
Fortheleadingtrajectory,atlarge
s
(sothat
®
(0)canbeignored),wefind:
r
=
2
J
p
s
=2
®
0
p
s
;
F
=
s
2
J
=
1
2
®
0
;
(1.6)
or:theforceisaconstant,andthepotentialbetweentwoquarksisalinearlyrisingone.
Butitisnotquitecorrecttoignoretheenergyoftheforcefield,and,furthermore,the
aboveargumentdoesnotexplainthedaughtertrajectories.Amoresatisfactorymodelof
themesonsisthe
vortexmodel
:anarrowtubeoffieldlinesconnectsthetwoquarks.This
4
linelikestructurecarriesalltheenergy.Itindeedgeneratesaforcethatisofauniversal,
constantstrength:
F
=d
E=
d
r
.Althoughthequarksmoverelativistically,wenowignore
theircontributiontotheenergy(asmall,negativevaluefor
®
(0)willlaterbeattributed
tothequarks).Astationaryvortexcarriesanenergy
T
perunitoflength,andwetake
thisquantityasaconstantofNature.Assumethisvortex,withthequarksatitsend
points,torotatesuchthattheendpointsmovepracticallywiththespeedoflight,
c
.At
apoint
x
between
¡r=
2and
r=
2,theangularvelocityis
v
(
x
)=
cx=
(
r=
2).Thetotal
energyisthen(putting
c
=1):
E
=
Z
r=
2
p
1
¡v
2
=
Tr
T
d
x
Z
1
0
(1
¡x
2
)
¡
1
=
2
d
x
=
1
2
¼Tr;
(1.7)
¡r=
2
whiletheangularmomentumis
J
=
Z
r=
2
p
1
¡v
2
=
1
2
Tr
2
Z
1
p
1
¡x
2
=
Tr
2
¼
x
2
d
x
8
:
(1.8)
¡r=
2
0
Thus,inthismodelalso,
E
2
=
1
J
2
¼T
=
®
0
;
®
(0)=0
;
(1.9)
buttheforce,or
stringtension
,
T
,isafactor
¼
smallerthaninEq.(1.6).
1.2.TheVenezianoformula.
1
4
2
3
Considerelasticscatteringoftwomesons,(1)and(2),formingtwoothermesons(3)
and(4).Elasticheremeansthatnootherparticlesareformedintheprocess.Theingoing
4-momentaare
p
(1)
¹
and
p
(2)
¹
.Theoutgoing4-momentaare
p
(3)
¹
and
p
(4)
¹
.Thec.m.energy
squaredis
s
=
¡
(
p
(1)
¹
+
p
(2)
¹
)
2
:
(1.10)
Anindependentkinematicalvariableis
t
=
¡
(
p
(1)
¹
¡p
(4)
¹
)
2
:
(1.11)
Similarly,onedefines
u
=
¡
(
p
(1)
¹
¡p
(3)
¹
)
2
;
(1.12)
5
Tvx
d
x
Plik z chomika:
annam101
Inne pliki z tego folderu:
Zwiebach B. A first course in string theory(T)(369s).djvu
(1884 KB)
Szabo R. Busstepp lectures on string theory.djvu
(347 KB)
Nakahara M. Geometry, topology and physics(T)(497s).djvu
(5265 KB)
Anderson M.R. The mathematical theory of cosmic strings (IOP, 2003)(T)(393s).djvu
(2550 KB)
Strings Branes and Superstring Theory - S. Forste.pdf
(1413 KB)
Inne foldery tego chomika:
Aerodynamics Flight Mechanics
Aerospace Design
Aerospace Propulsion
Astronomy and Astrophysics
Computational Numerical Methods
Zgłoś jeśli
naruszono regulamin