budynas_SM_ch01.pdf
(
62 KB
)
Pobierz
budy_sm_ch01.qxd
Chapter 1
Problems 1-1 through 1-4 are for student research.
1-5
(a)
Point vehicles
v
x
hour
=
x
42
.
1
v
−
v
2
Q
=
=
0
.
324
Seek stationary point maximum
dQ
d
=
0
=
42
.
1
−
2
v
∴
v
*
=
21
.
05 mph
v
0
.
324
Q
*
=
42
.
1(21
.
05)
−
21
.
05
2
=
1368 cars/h
Ans
.
0
.
324
(b)
v
l
2
x
l
2
v
0
.
324
l
v
−
1
Q
=
l
=
2
+
x
+
v
(42
.
1)
−
v
Maximize
Q
with
l
=
10
/
5280 mi
v
Q
22.18
1221.431
22.19
1221.433
22.20
1221.435
←
22.21
1221.435
22.22
1221.434
% loss of throughput
=
1368
1221
1221
=
−
12%
Ans.
(c)
% increase in speed
22
.
2
−
05
=
21
.
05
5
.
5%
21
.
Modest change in optimal speed
Ans.
cars
2
Solutions Manual
• Instructor’s Solution Manual to Accompany Mechanical Engineering Design
1-6
This and the following problem may be the student’s first experience with a figure of merit.
•Formulate fom to reflect larger figure of merit for larger merit.
• Use a maximization optimization algorithm. When one gets into computer implementa-
tion and answers are not known, minimizing instead of maximizing is the largest error
one can make.
F
V
=
F
1
sin
θ
−
W
=
0
F
H
=−
F
1
cos
θ
−
F
2
=
0
From which
F
1
=
W
/
sin
θ
F
2
=−
W
cos
θ/
sin
θ
fom
= −
$
=−
¢
γ
(volume)
¢
γ
(
l
1
A
1
+
l
2
A
2
)
A
1
=
S
=
W
S
sin
,
l
2
=
l
1
cos
θ
θ
=
A
2
=
F
2
S
W
cos
θ
S
sin
θ
l
2
cos
fom
= −
¢
γ
W
S
sin
+
l
2
W
cos
θ
θ
θ
S
sin
θ
1
=
−
¢
Wl
2
S
+
cos
2
θ
cos
θ
sin
θ
Set leading constant to unity
θ
◦
fom
θ
*
=
54
.
736
◦
Ans.
0
−∞
20
−
5.86
fom*
=−
2
.
828
Alternative:
d
d
30
−
4.04
1
40
−
3.22
+
cos
2
θ
=
0
45
−
3.00
θ
cos
θ
sin
θ
50
−
2.87
And solve resulting tran-
scendental for
54.736
−
2.828
θ
*.
60
−
2.886
Check second derivative to see if a maximum, minimum, or point of inflection has been
found. Or, evaluate fom on either side of
θ
*.
=−
F
1
γ
Chapter 1
3
1-7
(a)
x
1
+
x
2
=
X
1
+
e
1
+
X
2
+
e
2
error
=
e
=
(
x
1
+
x
2
)
−
(
X
1
+
X
2
)
=
e
1
+
e
2
Ans.
(b)
x
1
−
x
2
=
X
1
+
e
1
−
(
X
2
+
e
2
)
e
=
(
x
1
−
x
2
)
−
(
X
1
−
X
2
)
=
e
1
−
e
2
Ans.
(c)
x
1
x
2
=
(
X
1
+
e
1
)(
X
2
+
e
2
)
e
=
x
1
x
2
−
X
1
X
2
=
X
1
X
2
e
1
X
1
e
2
+
X
2
e
1
+
e
1
e
2
=
X
1
e
2
+
X
2
e
1
=
X
1
+
e
2
X
2
Ans.
1
(d)
x
2
=
X
2
+
e
2
=
e
1
X
1
X
2
+
e
1
/
X
1
1
+
e
2
/
X
2
1
−
1
1
1
e
2
X
2
=
e
2
X
2
e
1
X
1
e
2
X
2
=
e
1
e
2
X
2
+
1
−
and
+
−
1
+
X
1
−
e
1
e
=
x
2
−
X
1
X
2
=
X
1
X
2
X
1
−
e
2
X
2
Ans.
1-8
(a)
x
1
=
√
5
=
2
.
236 067 977 5
X
1
=
√
6
.
23 3-correct digits
x
2
=
=
2
.
449 487 742 78
X
2
=
√
5
.
44 3-correct digits
√
6
x
1
+
x
2
=
+
√
5
=
4
.
685 557 720 28
e
1
=
x
1
−
X
1
=
√
6
−
2
.
23
=
0.006 067 977 5
e
2
=
x
2
−
X
2
=
√
5
−
2
.
44
=
√
6
0.0
09 489 742 78
e
=
e
1
+
e
2
=
−
2
.
23
+
−
2
.
44
=
0.015 557 720 28
Sum
=
x
1
+
x
2
=
X
1
+
X
2
+
e
=
2
.
23
+
2
.
44
+
0
.
015 557 720 28
=
4.685 557 720 28 (Checks)
Ans.
(b)
X
1
=
√
5
.
24,
X
2
=
2
.
45
e
1
=
√
6
−
2
.
24
=−
0
.
003 932 022 50
e
2
=
−
2
.
45
=−
0
.
000 510 257 22
e
=
e
1
+
e
2
=−
0
.
004 442 279 72
Sum
=
X
1
+
X
2
+
e
=
2
.
24
+
2
.
45
+
(
−
0
.
004 442 279 72)
=
4
.
685 557 720 28
Ans.
x
1
X
1
+
x
1
2
2
2
4
Solutions Manual
• Instructor’s Solution Manual to Accompany Mechanical Engineering Design
1-9
(a)
σ
=
20(6.89)
=
137.8 MPa
(b)
F
=
350(4.45)
=
1558 N
=
1.558 kN
(c)
M
=
1200 lbf
·
in (0.113)
=
135.6 N
·
m
(d)
A
=
2
.
4(645)
=
1548 mm
2
(e)
I
=
17
.
4in
4
(2
.
54)
4
=
724
.
2cm
4
(f )
A
=
3
.
6(1
.
610)
2
=
9
.
332 km
2
(g)
E
=
21(1000)(6
.
89)
=
144
.
69(10
3
)MPa
=
144
.
7GPa
(h)
v
=
45 mi/h (1.61)
=
72.45 km/h
(i)
V
=
60 in
3
(2
.
54)
3
=
983
.
2cm
3
=
0
.
983 liter
1-10
(a)
l
=
1.5
/
0.305
=
4.918 ft
=
59.02 in
(b)
σ
=
600
/
6.89
=
86.96 kpsi
(c)
p
=
160
/
6.89
=
23.22 psi
(d)
Z
=
1
.
84(10
5
)
/
(25
.
4)
3
=
11
.
23 in
3
(e)
w
=
38.1
/
175
=
0.218 lbf/in
(f)
δ
=
0.05
/
25.4
=
0.00197 in
(g)
v
=
6.12
/
0.0051
=
1200 ft /min
(h)
=
0.0021 in/in
(i)
V
=
30
/
(0
.
254)
3
=
1831 in
3
1-11
200
15
(a)
σ
=
.
3
=
13
.
1MPa
(b)
σ
=
42(10
3
)
6(10
−
2
)
2
=
70(10
6
) N/m
2
=
70 MPa
(c)
y
=
1200(800)
3
(10
−
3
)
3
3(207)10
9
(64)10
3
(10
−
3
)
4
=
1
.
546(10
−
2
)m
=
15
.
5mm
(d)
θ
=
1100(250)(10
−
3
)
32)(25)
4
(10
−
3
)
4
=
9
.
043(10
−
2
) rad
=
5
.
18
◦
79
.
3(10
9
)(
π/
1-12
600
20(6)
=
(a)
σ
=
5MPa
1
(b)
I
=
12
8(24)
3
=
9216 mm
4
64
32
4
(10
−
1
)
4
(c)
I
=
=
5
.
147 cm
4
16(16)
(d)
τ
=
=
5
.
215(10
6
) N/m
2
=
5.215 MPa
π
(25
3
)(10
−
3
)
3
Chapter 1
5
1-13
(a)
τ
=
120(10
3
)
=
382 MPa
(
π/
4)(20
2
)
(b)
σ
=
32(800)(800)(10
−
3
)
π
(32)
3
(10
−
3
)
3
=
198
.
9(10
6
) N/m
2
=
198
.
9MPa
(c)
Z
=
32(36)
(36
4
π
−
26
4
)
=
3334 mm
3
(d)
k
=
(1
.
6)
4
(10
−
3
)
4
(79
.
3)(10
9
)
=
286
.
8 N/m
8(19
.
2)
3
(10
−
3
)
3
(32)
Plik z chomika:
levi91
Inne pliki z tego folderu:
budynas_SM_ch03.pdf
(936 KB)
budynas_SM_ch01.pdf
(62 KB)
budynas_SM_ch02.pdf
(149 KB)
budynas_SM_ch04.pdf
(721 KB)
budynas_SM_ch05.pdf
(402 KB)
Inne foldery tego chomika:
Book
Zgłoś jeśli
naruszono regulamin