trza_umiec by Heroin.pdf

(1499 KB) Pobierz
(Microsoft Word - KLASYCZNA DEFINICJA PRAWDOPODOBIE\321STWAb.doc)
N
nnnnn
n
P
(
A
)
=
l
.
zdarze ı
sprzyj
.
=
m
l
.
zdarze ı
n
nn
nnnnn
nnnn
nnnnn
nnnnn
nn
nnn
1
0
£ A
P
(
)
£
1
P
( =
W
)
Æ
A nnn
Ç B
=
P
(
A
È
B
)
=
P
(
A
)
+
P
(
B
)
nn
A
È
B
=
A
È
[
B
(
A
Ç
B
)]
P
(
A
È
B
)
=
P
( )
A
+
P
[
B
(
A
Ç
B
)
]
(
)
[
(
)
]
B
=
A
Ç
B
È
B
A
Ç
B
nnn
nnnnn
nnnn
nnn
nn
P
( )
A
=
lim ¥
®
cz
.
zd
.
A
n
nnnn
nn
n
P
( )
A
|
B
=
P
(
A
Ç
B
)
( )
P
B
nn
( )
P
A
|
B
=
P
(
A
Ç
B
)
( )
P
B
nn
(
A
|
Y
=
y
)
=
lim
P
(
A
,
y
D
y
£
Y
<
y
+
D
y
)
(
)
P
y
D
y
£
Y
<
y
+
D
y
D
y
®
0
majckel xD co szybko si ħ obudził...
P
246195635.074.png 246195635.085.png 246195635.096.png 246195635.107.png 246195635.001.png 246195635.012.png 246195635.023.png
N
n n nn
( ) (
P
A
=
P
A
|
A
1
) ( ) (
P
A
1
+
P
A
|
A
2
) ( )
P
A
2
+
...
+
P
(
A
|
A
n
) ( )
n
P
A
nn A A A n
nnBPBn
(
A
|
B
)
=
P
(
B
|
A
n
) ( )
P
A
n
(
) ( ) (
) ( )
(
) ( )
N
n
P
B
|
A
P
A
+
P
B
|
A
P
A
+
...
+
P
B
|
A
P
A
1
1
2
2
N
P(A n )nn (
P |
B
A
)
n
nnnn
(
P
A
Ç
B
) ( ) ( )
=
P
A
P
B
A
i
B
A
i
B
A
i
B
n nnnn
nnnnn
nnn
n n nnnnnn
n )
(
m £ nnnn
n
P
(
A
r
Ç
A
r
Ç
...
Ç
A
r
) ( ) ( ) ( )
m
=
P
A
r
P
A
r
...
P
A
r
1
2
m
1
2
nn
X
k
X nn 0
l
k l nnnnn
=
0
d nnnnnnnn
kl
=
X nn
nnnnnnnnn
nn
WspĀczynnik korelacji - liczba okreŁlajĥca w jakim stopniu zmienne sĥ wspĀzaleōne. Jest miarĥ
korelacji dwu (lub wiĪcej) zmiennych. Zwykle moōe przybieraě wartoŁci od -1 (zupeĀna korelacja
ujemna), przez 0 (brak korelacji) do +1 (zupeĀna korelacja dodatnia).
(
kl
=
0
X
k
l
P
X
³ 1
) X
£
E
¥
¥
¥
(
)
( )
( )
( ) X
P
X
³
1
=
Ð
dF
x
£
Ð
xdF
x
£
Ð
xdF
x
=
E
1
1
0
[
P
X
E
X
³
e
]
£
W
( )
2
X
e
a
Me
X
= X
E
=
przykĀad:
1
x
( )
p
x
=
e
c
c
>
0
c
Me
X
1
Ð
p
( )
x
dx
= Ð
p
( )
x
dx
=
2
0
Me
X
Ð 1
x
Me
X
Me
X
1
e
dx
=
e
e
=
c
c
nnnnn
c
n
c
2
Me
X
majckel xD co szybko si ħ obudził...
P
d nn
246195635.027.png 246195635.028.png 246195635.029.png 246195635.030.png 246195635.031.png 246195635.032.png 246195635.033.png 246195635.034.png 246195635.035.png 246195635.036.png 246195635.037.png 246195635.038.png 246195635.039.png 246195635.040.png 246195635.041.png 246195635.042.png 246195635.043.png 246195635.044.png
N
Me =
X
c
ln
2
1
Ä
(
x
a
) Õ
Ö
2
Ô
(
)
p
( )
x
=
exp
Å
Æ
x
Î
¥
,
¥
2
p
2
s
2
X 4
nn
(
)
W
X
s
2
1
P
X
E
X
³
4
s
£
=
=
16
s
2
16
s
2
16
( )
1
Ä
( ) Õ
Ö
x
4
2
Ô
p
x
=
exp
Å
Æ
50
50
p
±
10
a
=
E
X
=
4
s
=
50
1
=
25
¼
W
( ) 25
X
=
2
P
(
X
E
X
³
10
)
£
W
X
=
25
=
1
100
100
4
nn X Y
E
(
X
+
Y
)
=
E
X
+
E
Y
(
E
X
×
Y
)
=
E
X
×
E
Y
E
Æ
X
+
Y
Ö
=
E
X
×
E
Y
=
1
(
E
X
+
E
Y
)
2
2
2
2
2
W
(
X
+
Y
)
=
W
X
+
W
Y
p
( )
x
,
y
=
p
x
( ) ( )
x
×
p
y
y
W
(
X
+
a
) X
=
W
W
( )
a
X
=
a
2
W
( )
X
75
=
P
(
X
>
200
)
=
P
Æ
X
>
1
Ö
=
P
( )
Y
>
1
<
E
Y
=
E
X
=
1
E
X
200
200
200
P
(
X
>
200
)
<
1
×
75
=
3
200
8
(
P
a
1
£
X
1
£
b
1
,
a
2
£
X
2
£
b
2
)
P
(
a
1
£
X
1
£
b
1
,
a
2
£
X
2
£
b
2
) (
=
P
X
1
<
b
1
,
X
2
<
b
2
) (
P
X
1
<
a
1
,
X
2
<
b
2
) (
+
P
X
1
<
b
1
,
X
2
<
a
2
) (
P
X
1
<
a
,
X
2
<
a
2
) =
=
F
(
b
1
,
b
2
) (
F
a
1
,
b
2
) (
F
b
1
,
a
2
) (
+
F
a
1
,
a
2
)
F X ( )
p E W
dF
p =
( )
( )
dt
x
¥
¥
Ä
dF
( )
x
Ô
( )
E
X
=
Ð
xp
x
dx
=
Ð
x
Å
Æ
Õ
Ö
dx
dt
¥
¥
W
X
=
E
X
2
( ) 2
E
X
Y ( )
p x
x
( )
p y
y
Y
= ( )
e
x
p x
x
p y
( )
y
=
px
( [ ]
g
1
y
d
g
1
( )
y
dy
majckel xD co szybko si ħ obudził...
Ä
Ô
XE
X n
Y nn
Ä
Ô
+
1
246195635.045.png 246195635.046.png 246195635.047.png 246195635.048.png 246195635.049.png 246195635.050.png 246195635.051.png 246195635.052.png 246195635.053.png 246195635.054.png 246195635.055.png 246195635.056.png 246195635.057.png 246195635.058.png 246195635.059.png 246195635.060.png 246195635.061.png 246195635.062.png 246195635.063.png 246195635.064.png 246195635.065.png 246195635.066.png 246195635.067.png 246195635.068.png 246195635.069.png 246195635.070.png 246195635.071.png 246195635.072.png 246195635.073.png 246195635.075.png 246195635.076.png 246195635.077.png 246195635.078.png 246195635.079.png 246195635.080.png
N
g
( )
Y
=
( ) Y
e
x
g
1
y
=
ln
(
=
E
[
X
E
X
)(
Y
E
Y
)
=
E
XY
( )( )
( )
E
X
E
Y
[
]
[
]
( ) ( )
kl
s
X
s
Y
( )
E
X
2
E
X
2
E
Y
2
E
Y
2
nnnnan
nn
(
x
a
)
=
F
( )
a
x
annnnn
nnn
0
x
+
a
) ( )
=
p
a
x
l
k l l l nnnn X X
0
l
lk
l
2
³
kk
ll
l l 0
>
k l
>
l
2
kl
l
£
1
l
ll
kk
nnnnnn
X
X
=
0
1
2
= Y ( )
0
1
XE
E
( )
XY
=
E
X
×
E
Y
P
(
X
= k
x
)
=
1
3
1
P
(
Y
= k
y
)
=
2
= Ã =
3
(
)
1
1
1
E
X
x
×
P
X
=
x
=
0
×
+
1
×
+
2
×
=
1
k
k
3
3
3
k
1
= Ã =
2
(
)
1
1
1
1
E
Y
y
×
P
Y
=
y
=
0
×
+
1
×
+
2
×
=
k
k
2
2
2
2
k
1
E
( )
XY
=
E
X
×
E
Y
=
1 =
×
1
2
2
nn X n (
)
l
n
P
X
=
n
=
e
l
n
!
nnn
¥
¥
l
n
¥
( )
l
e
jv
n
[ ]
[
( )
]
( )
(
)
Ã
Ã
Ã
j
v
=
Ee
jv
X
=
e
jvn
P
X
=
n
=
e
jvn
e
l
=
e
l
=
e
l
exp
l
e
jv
=
exp
l
e
jv
1
x
n
!
n
!
n
=
0
n
=
0
n
=
0
d
j
x
( )
v
=
l
je
jv
×
exp
[
l
( )
e
jv
1
]
dv
( )
V
j
x
V
=
j
l
dV
V
=0
d
2
j
( )
v
[
( )
]
[
( )
]
(
)
[
( )
]
x
=
l
2
je
2
jv
×
exp
l
e
jv
1
je
jv
×
exp
l
e
jv
1
=
je
jv
1
+
l
jv
×
exp
l
jv
1
dv
2
majckel xD co szybko si ħ obudził...
]
d
+ 1
nnnn
n
(
F
p
e
e
246195635.081.png 246195635.082.png 246195635.083.png 246195635.084.png 246195635.086.png 246195635.087.png 246195635.088.png 246195635.089.png 246195635.090.png 246195635.091.png 246195635.092.png 246195635.093.png 246195635.094.png 246195635.095.png 246195635.097.png 246195635.098.png 246195635.099.png 246195635.100.png 246195635.101.png 246195635.102.png 246195635.103.png 246195635.104.png 246195635.105.png 246195635.106.png 246195635.108.png 246195635.109.png 246195635.110.png 246195635.111.png 246195635.112.png
N
d
2
j
( )
v
( l
x
=
l
1
+
dv
2
v
=
0
E
X
=
l
E
X
2
=
l
( l
1
+
W
( )
=
s
2
( )
X
=
E
X
2
( ) ( )
E
X
2
=
l
1
+
l
l
2
=
l
s
( )
X
=
E
X
2
( ) 2
E
X
( )
= Ã =1
K
(
)
j
v
e
jvx
k
P
X
x
x
k
DLA ZMIENNEJ TYPY CI ġ GŁEGO :
k
j
x Ð
( )
=
e
jvx
k
p
( ) dx
x
PRZYKŁAD : MAMY BINARN ġ ZMIENNA LOSOW ġ X PRZYJMUJ ġ C ġ DWIE WARTO ĺ CI +1 I –1 Z JEDNAKOWYMI
PRAWDOPODOBIE İ STWAMI RÓWNYMI 0,5. D O WYZNACZENIA FUNKCJI CHARAKTERYSTYCZNEJ KORZYSTAMY ZE WZORU :
( )
¥
= Ã =1
K
(
)
j
v
e
jvx
k
P
X
x
x
k
k
j
( )
=
e
j
( )
+
1
v
P
(
X
=
+
1
)
+
e
j
( )
1
v
P
(
X
=
1
) (
=
1
e
jv
+
e
jv
) v
=
cos
x
2
W YZNACZY Ę FUNKCJE CHARAKTERYSTYCZN ġ ZMIENNEJ LOSOWEJ X, PRZYJMUJ ġ CEJ WARTO ĺ CI W CAŁYM PRZEDZIALE LICZB
RZECZYWISTYCH I MAJ ġ CEJ FUNKCJE G Ħ STO ĺ CI PRAWDOPODOBIE İ STWA DAN ġ WZOREM :
x
2
1
( )
p
x
=
e
2
2
p
( UNORMOWANA ZMIENNA NORMALNA )
x
2
x
2
v
2
1
1
jvx
( )
( )
j
v
=
Ð
e
jvx
p
x
dx
=
Ð
e
jvx
e
dx
=
Ð
e
dx
=
e
2
2
2
x
2
p
2
p
¥
¥
¥
X
(
)
l
n
P
X
=
n
=
e
l
n
n
!
a
=
E
X
=
l
;
a
=
E
X
2
=
l
( 1
l
+
1
2
W
X
=
E
X
2
( )
E
X
2
=
l
( )
l
+
1
l
2
=
l
W
X
= X
E
=
l
nnnnnnnn
nnnnn
nnnnn
nnnn k
x
( )
= Ã =1
K
[
(
)
] (
)
H
X
log
2
P
X
=
x
k
×
P
X
=
x
k
k
n
majckel xD co szybko si ħ obudził...
X
v
v
246195635.113.png 246195635.114.png 246195635.115.png 246195635.116.png 246195635.117.png 246195635.002.png 246195635.003.png 246195635.004.png 246195635.005.png 246195635.006.png 246195635.007.png 246195635.008.png 246195635.009.png 246195635.010.png 246195635.011.png 246195635.013.png 246195635.014.png 246195635.015.png 246195635.016.png 246195635.017.png 246195635.018.png 246195635.019.png 246195635.020.png 246195635.021.png 246195635.022.png 246195635.024.png 246195635.025.png 246195635.026.png
Zgłoś jeśli naruszono regulamin