Clarke B. M. N., Fourier Theory.pdf
(
326 KB
)
Pobierz
Math 335 Fourier Theory Notes
Macquarie University
Department of Mathematics
F o u r i e r T h e o r y
B . M . N . C l a r k e
Table of Contents
1.
Introduction ................................................................................................ .................................
1
2.
Linear differential operators ................................................................................................ ......
3
3.
Separation of variables ................................................................................................ ...............
5
4.
Fourier Series ................................................................................................ ..............................
9
5.
Bessel's inequality ................................................................................................ .....................
14
6.
Convergence results for Fourier series ....................................................................................
16
7.
Differentiation and Integration of Fourier Series ...................................................................
20
8.
Half-range Fourier series ................................................................................................ .........
23
9.
General Intervals ................................................................................................ .....................
25
10. Application to Laplace's equation ............................................................................................
27
11. Sturm-Liouville problems and orthogonal functions ..............................................................
33
12. Bessel Functions ................................................................................................ .......................
37
13. Fourier Transforms ................................................................................................ ..................
41
14. Inverse Fourier Transforms ................................................................................................ .....
47
15. Applications to Differential Equations ....................................................................................
50
16. Plancherel's and Parseval's Identities .....................................................................................
54
17. Band Limited Functions and Shannon's Sampling Theorem .................................................
56
18. Heisenberg’s Inequality ................................................................................................ ............
59
1. Introduction.
1
1. Introduction.
Fourier theory is a branch of mathematics first invented to solve certain problems in
partial differential equations. The most well-known of these equations are:
Laplace's equation,
¶
x
2
+
¶
y
2
= 0, for
u
(
x
,
y
) a function of two variables,
¶
¶
the wave equation,
2
u
¶
t
2
–
c
2
¶
x
2
= 0, for
u
(
x
,
t
) a function of two variables,
¶
the heat equation,
u
¶
t
–
k
¶
x
2
= 0, for
u
(
x
,
t
) a function of two variables.
¶
In the heat equation,
x
represents the position along the bar measured from some origin,
t
represents time,
u
(
x
,
t
) the temperature at position
x
, time
t
. Fourier was initially
concerned with the heat equation. Incidentally, the same equation describes the
concentration of a dye diffusing in a liquid such as water. For this reason the equation is
sometimes called the diffusion equation.
In the wave equation,
x
, represents the position along an elastic string under tension,
measured from some origin,
t
represents time,
u
(
x
,
t
) the displacement of the string from
equilibrium at position
x
, time
t
.
In Laplace's equation,
u
(
x
,
y
) represents the steady temperature of a flat conducting plate
at the position (
x
,
y
) in the plane.
Since both the heat equation and the wave equation involve a single space variable
x
, we
sometime refer to them as the
one dimensional heat equation
and the
one dimensional
wave equation
respectively.
Laplace's equation involves two spatial variables and is therefore sometimes called the
two-dimensional laplace equation
. Laplace's equation is connected to the theory of analytic
functions of a complex variable. If
f
(
z
) =
u
(
x
,
y
) +
iv
(
x
,
y
), the real and imaginary parts
u
(
x
,
y
),
v
(
x
,
y
) satisfy the Cauchy-Riemann equations,
u
¶
x
=
¶
v
¶
y
,
u
¶
y
= –
¶
v
¶
x
,
Then
¶
x
2
=
¶
2
v
y
= –
¶
2
u
¶
¶
x
¶
¶
y
2
or
¶
x
2
+
¶
y
2
= 0.
2
u
¶
¶
Similarly,
¶
x
2
+
¶
y
2
= 0.
2
v
¶
¶
Heat conduction and wave propagation usually occur in 3 space dimensions and are
described by the following versions of Laplace's equation, the heat equation and the wave
equation;
¶
x
2
+
¶
y
2
+
¶
2
u
¶
z
2
= 0,
¶
¶
2
u
2
u
¶
2
u
¶
2
u
¶
¶
2
u
2
u
2
v
2
u
2
u
1. Introduction.
2
u
¶
t
–
k
æ
¶
x
2
+
¶
y
2
+
¶
2
u
¶
z
2
= 0,
ø
ö
¶
¶
2
u
¶
t
2
–
c
2
æ
¶
x
2
+
¶
y
2
+
¶
2
u
¶
z
2
= 0.
ø
ö
¶
¶
¶
2
u
2
u
¶
2
u
2
u
2. Linear differential operators.
3
2. Linear differential operators.
All of the above mentioned partial differential equations can be written in the form
L
[
u
] =
F
where
L
[
u
]
º Ñ
2
u
=
¶
x
2
+
¶
y
2
+
¶
2
u
¶
z
2
in Laplace's equation,
¶
¶
L
[
u
]
º
¶
t
–
k
æ
¶
x
2
+
¶
2
u
y
2
+
¶
2
u
2
u
¶
z
2
=
¶
ø
ö
u
¶
t
–
k
Ñ
2
u
in the heat equation,
¶
¶
and
L
[
u
]
¶
2
u
¶
t
2
–
c
2
æ
¶
x
2
+
¶
y
2
+
¶
2
u
¶
z
2
=
¶
ø
ö
2
u
¶
t
2
–
c
2
Ñ
2
u
in the heat equation.
¶
¶
L
[
u
] is in each case, a
linear partial differential operator
. Linearity means that for any
two functions
u
1
,
u
2
, and any two constants
c
1
,
c
2
,
L
[
c
1
u
1
+
c
2
u
2
] =
c
1
L
[
u
1
] +
c
2
L
[
u
2
].
In other words,
L
is linear if it preserves linear combinations of
u
1
,
u
2
. This definition
generalises to
L
[
c
1
u
1
+
....
+
c
n
u
n
] =
c
1
L
[
u
1
] +
...
+
c
n
L
[
u
n
]
for any functions
u
1
,...,
u
n
and constants
c
1
,...,
c
n
.
Let
u
(
x
1
,
x
2
,...,
x
n
) be a function of
n
variables
x
= (
x
1
,
x
2
,...,
x
n
). Then the most general linear
partial differential operator is of the form
n
n
¶
2
u
n
b
i
(
x
)
¶
u
L
[
u
] =
i
=1
j
=1
a
ij
(
x
)
x
j
+
i
=1
x
i
+
c
(
x
)
u
¶
x
i
¶
¶
where
a
ij
(
x
),
b
i
(
x
),
c
(
x
) are given coefficients.
The highest order partial derivative appearing is the
order
of the partial differential
operator. Henceforth we will consider only second order partial differential operators of the
form
n
n
¶
2
u
n
b
i
(
x
)
¶
u
L
[
u
] =
i
=1
j
=1
a
ij
(
x
)
x
j
+
i
=1
x
i
+
c
(
x
)
u
.
¶
x
i
¶
¶
The general linear second order partial differential equation is of the form
L
[
u
] =
F
(
x
)
where
F
(
x
) is a given function. When
F
(
x
)
º
0, the equation
L
[
u
] = 0 is called
homogeneous
.
If
F
(
x
)
¹
0, the equation
L
[
u
] =
F
(
x
) is called
non-homogeneous
.
Linearity of
L
is essential to the success of the Fourier method. There are usually
(infinitely) many solutions of a linear partial differential equation. The number of
2
u
2
u
u
¶
2
u
2
u
º
Plik z chomika:
Kuya
Inne pliki z tego folderu:
Carslaw H. S., Introduction to the theory of Fourier's series and integrals (2nd Ed., MacMillan, 1981).pdf
(21867 KB)
Clarke B. M. N., Fourier Theory.pdf
(326 KB)
Oppenheim G., Wavelets and Their Applications.pdf
(5815 KB)
Poularikas. Transforms and applications handbook 2ed (CRC Press, 2000)(T)(1335s).pdf
(80732 KB)
Spiegel M. R., Fourier Analysis (McGraw Hill, Schaum).pdf
(8307 KB)
Inne foldery tego chomika:
Algebra
Analysis
Applied mathematics
Artificial Intelligence
Calculus
Zgłoś jeśli
naruszono regulamin