Feynman_Lectures_on_Physics_Volume_1_Chapter_03.pdf

(181 KB) Pobierz
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
3
The Relation of Physics to Other Sciences
3-1 Introduction
Physics is the most fundamental and all-inclusive of the sciences, and has
had a profound effect on all scientific development. In fact, physics is the present-
day equivalent of what used to be called natural philosophy, from which most of
our modern sciences arose. Students of many fields find themselves studying
physics because of the basic role it plays in all phenomena. In this chapter we
shall try to explain what the fundamental problems in the other sciences are,
but of course it is impossible in so small a space really to deal with the complex,
subtle, beautiful matters in these other fields. Lack of space also prevents our
discussing the relation of physics to engineering, industry, society, and war, or
even the most remarkable relationship between mathematics and physics. (Mathe-
matics is not a science from our point of view, in the sense that it is not a natural
science. The test of its validity is not experiment.) We must, incidentally, make it
clear from the beginning that if a thing is not a science, it is not necessarily bad.
For example, love is not a science. So, if something is said not to be a science,
it does not mean that there is something wrong with it; it just means that it is not
a science.
3-1 Introduction
3-2 Chemistry
3-3 Biology
3-4 Astronomy
3-5 Geology
3-6 Psychology
3-7 How did it get that way?
3-2 Chemistry
The science which is perhaps the most deeply affected by physics is chemistry.
Historically, the early days of chemistry dealt almost entirely with what we now call
inorganic chemistry, the chemistry of substances which are not associated with
living things. Considerable analysis was required to discover the existence of the
many elements and their relationships—how they make the various relatively
simple compounds found in rocks, earth, etc. This early chemistry was very
important for physics. The interaction between the two sciences was very great
because the theory of atoms was substantiated to a large extent by experiments
in chemistry. The theory of chemistry, i.e., of the reactions themselves, was
summarized to a large extent in the periodic chart of Mendeleev, which brings out
many strange relationships among the various elements, and it was the collection
of rules as to which substance is combined with which, and how, that constituted
inorganic chemistry. All these rules were ultimately explained in principle by
quantum mechanics, so that theoretical chemistry is in fact physics. On the
other hand, it must be emphasized that this explanation is in principle. We have
already discussed the difference between knowing the rules of the game of chess,
and being able to play. So it is that we may know the rules, but we cannot play
very well. It turns out to be very difficult to predict precisely what will happen in
a given chemical reaction; nevertheless, the deepest part of theoretical chemistry
must end up in quantum mechanics.
There is also a branch of physics and chemistry which was developed by both
sciences together, and which is extremely important. This is the method of
statistics applied in a situation in which there are mechanical laws, which is aptly
called statistical mechanics. In any chemical situation a large number of atoms are
involved, and we have seen that the atoms are all jiggling around in a very random
and complicated way. If we could analyze each collision, and be able to follow
in detail the motion of each molecule, we might hope to figure out what would
happen, but the many numbers needed to keep track of all these molecules ex-
ceeds so enormously the capacity of any computer, and certainly the capacity of
3-1
the mind, that it was important to develop a method for dealing with such com-
plicated situations. Statistical mechanics, then, is the science of the phenomena
of heat, or thermodynamics. Inorganic chemistry is, as a science, now reduced
essentially to what are called physical chemistry and quantum chemistry; physical
chemistry to study the rates at which reactions occur and what is happening in
detail (How do the molecules hit? Which pieces fly off first?, etc.), and quantum
chemistry to help us understand what happens in terms of the physical laws.
The other branch of chemistry is organic chemistry, the chemistry of the
substances which are associated with living things. For a time it was believed
that the substances which are associated with living things were so marvelous
that they could not be made by hand, from inorganic materials. This is not at
all true—they are just the same as the substances made in inorganic chemistry,
but more complicated arrangements of atoms are involved. Organic chemistry
obviously has a very close relationship to the biology which supplies its substances,
and to industry, and furthermore, much physical chemistry and quantum mechanics
can be applied to organic as well as to inorganic compounds. However, the main
problems of organic chemistry are not in these aspects, but rather in the analysis
and synthesis of the substances which are formed in biological systems, in living
things. This leads imperceptibly, in steps, toward biochemistry, and then into
biology itself, or molecular biology.
3-3 Biology
Thus we come to the science of biology, which is the study of living things.
In the early days of biology, the biologists had to deal with the purely descriptive
problem of finding out what living things there were, and so they just had to
count such things as the hairs of the limbs of fleas. After these matters were worked
out with a great deal of interest, the biologists went into the machinery inside the
living bodies, first from a gross standpoint, naturally, because it takes some effort
to get into the finer details.
There was an interesting early relationship between physics and biology in
which biology helped physics in the discovery of the conservation of energy, which
was first demonstrated by Mayer in connection with the amount of heat taken in
and given out by a living creature.
If we look at the processes of biology of living animals more closely, we see
many physical phenomena: the circulation of blood, pumps, pressure, etc. There
are nerves: we know what is happening when we step on a sharp stone, and that
somehow or other the information goes from the leg up. It is interesting how that
happens. In their study of nerves, the biologists have come to the conclusion that
nerves are very fine tubes with a complex wall which is very thin; through this
wall the cell pumps ions, so that there are positive ions on the outside and nega-
tive ions on the inside, like a capacitor. Now this membrane has an interesting
property; if it "discharges" in one place, i.e., if some of the ions were able to move
through one place, so that the electric voltage is reduced there, that electrical
influence makes itself felt on the ions in the neighborhood, and it affects the
membrane in such a way that it lets the ions through at neighboring points also.
This in turn affects it farther along, etc., and so there is a wave of "penetrability"
of the membrane which runs down the fiber when it is "excited" at one end by
stepping on the sharp stone. This wave is somewhat analogous to a long sequence
of vertical dominoes; if the end one is pushed over, that one pushes the next,
etc. Of course this will transmit only one message unless the dominoes are set
up again; and similarly in the nerve cell, there are processes which pump the ions
slowly out again, to get the nerve ready for the next impulse. So it is that we know
what we are doing (or at least where we are). Of course the electrical effects
associated with this nerve impulse can be picked up with electrical instruments,
and because there are electrical effects, obviously the physics of electrical effects
has had a great deal of influence on understanding the phenomenon.
The opposite effect is that, from somewhere in the brain, a message is sent
out along a nerve. What happens at the end of the nerve? There the nerve branches
3-2
out into fine little things, connected to a structure near a muscle, called an end-
plate. For reasons which are not exactly understood, when the impulse reaches
the end of the nerve, little packets of a chemical called acetylcholine are shot off
(five or ten molecules at a time) and they affect the muscle fiber and make it con-
tract—how simple! What makes a muscle contract? A muscle is a very large num-
ber of fibers close together, containing two different substances, myosin and
actomyosin, but the machinery by which the chemical reaction induced by acetyl-
choline can modify the dimensions of the molecule is not yet known. Thus the
fundamental processes in the muscle that make mechanical motions are not known.
Biology is such an enormously wide field that there are hosts of other problems
that we cannot mention at all—problems on how vision works (what the light does
in the eye), how hearing works, etc. (The way in which thinking works we shall
discuss later under psychology.) Now, these things concerning biology which
we have just discussed are, from a biological standpoint, really not fundamental,
at the bottom of life, in the sense that even if we understood them we still would
not understand life itself. To illustrate: the men who study nerves feel their work
is very important, because after all you cannot have animals without nerves.
But you can have life without nerves. Plants have neither nerves nor muscles,
but they are working, they are alive, just the same. So for the fundamental prob-
lems of biology we must look deeper; when we do, we discover that all living
things have a great many characteristics in common. The most common feature
is that they are made of cells, within each of which is complex machinery for doing
things chemically. In plant cells, for example, there is machinery for picking up
light and generating sucrose, which is consumed in the dark to keep the plant
alive. When the plant is eaten the sucrose itself generates in the animal a series
of chemical reactions very closely related to photosynthesis (and its opposite
effect in the dark) in plants.
In the cells of living systems there are many elaborate chemical reactions,
in which one compound is changed into another and another. To give some im-
pression of the enormous efforts that have gone into the study of biochemistry,
the chart in Fig. 3-1 summarizes our knowledge to date on just one small part of
the many series of reactions which occur in cells, perhaps a percent or so of it.
Here we see a whole series of molecules which change from one to another
in a sequence or cycle of rather small steps. It is called the Krebs cycle, the respira-
tory cycle. Each of the chemicals and each of the steps is fairly simple, in terms
of what change is made in the molecule, but—and this is a centrally important
discovery in biochemistry—these changes are relatively difficult to accomplish in a
laboratory. If we have one substance and another very similar substance, the one
does not just turn into the other, because the two forms are usually separated by
3-3
861970041.001.png
an energy barrier or "hill." Consider this analogy: If we wanted to take an object
from one place to another, at the same level but on the other side of a hill, we could
push it over the top, but to do so requires the addition of some energy. Thus
most chemical reactions do not occur, because there is what is called an activa-
tion energy in the way. In order to add an extra atom to our chemical requires
that we get it close enough that some rearrangement can occur; then it will stick.
But if we cannot give it enough energy to get it close enough, it will not go to com-
pletion, it will just go part way up the "hill" and back down again. However,
if we could literally take the molecules in our hands and push and pull the atoms
around in such a way as to open a hole to let the new atom in, and then let it snap
back, we would have found another way, around the hill, which would not require
extra energy, and the reaction would go easily. Now there actually are, in the cells,
very large molecules, much larger than the ones whose changes we have been de-
scribing, which in some complicated way hold the smaller molecules just right, so
that the reaction can occur easily. These very large and complicated things are
called enzymes. (They were first called ferments, because they were originally
discovered in the fermentation of sugar. In fact, some of the first reactions in
the cycle were discovered there.) In the presence of an enzyme the reaction will go.
An enzyme is made of another substance called protein. Enzymes are very
big and complicated, and each one is different, each being built to control a certain
special reaction. The names of the enzymes are written in Fig. 3-1 at each reaction.
(Sometimes the same enzyme may control two reactions.) We emphasize that the
enzymes themselves are not involved in the reaction directly. They do not change;
they merely let an atom go from one place to another. Having done so, the enzyme
is ready to do it to the next molecule, like a machine in a factory. Of course, there
must be a supply of certain atoms and a way of disposing of other atoms. Take
hydrogen, for example: there are enzymes which have special units on them which
carry the hydrogen for all chemical reactions. For example, there are three or four
hydrogen-reducing enzymes which are used all over our cycle in different places.
It is interesting that the machinery which liberates some hydrogen at one place
will take that hydrogen and use it somewhere else.
The most important feature of the cycle of Fig. 3-1 is the transformation
from GDP to GTP (guanadine-di-phosphate to guanadine-tri-phosphate) because
the one substance has much more energy in it than the other. Just as there is a
"box" in certain enzymes for carrying hydrogen atoms around, there are special
energy-carrying "boxes" which involve the triphosphate group. So, GTP has more
energy than GDP and if the cycle is going one way, we are producing molecules
which have extra energy and which can go drive some other cycle which requires
energy, for example the contraction of muscle. The muscle will not contract
unless there is GTP. We can take muscle fiber, put it in water, and add GTP,
and the fibers contract, changing GTP to GDP if the right enzymes are present.
So the real system is in the GDP-GTP transformation; in the dark the GTP
which has been stored up during the day is used to run the whole cycle around the
other way. An enzyme you see, does not care in which direction the reaction goes,
for if it did it would violate one of the laws of physics.
Physics is of great importance in biology and other sciences for still another
reason, that has to do with experimental techniques. In fact, if it were not for the
great development of experimental physics, these biochemistry charts would not
be known today. The reason is that the most useful tool of all for analyzing this
fantastically complex system is to label the atoms which are used in the reactions.
Thus, if we could introduce into the cycle some carbon dioxide which has a
"green mark" on it, and then measure after three seconds where the green mark
is, and again measure after ten seconds, etc., we could trace out the course of the
reactions. What are the "green marks"? They are different isotopes. We recall
that the chemical properties of atoms are determined by the number of electrons,
not by the mass of the nucleus. But there can be, for example in carbon, six
neutrons or seven neutrons, together with the six protons which all carbon nuclei
have. Chemically, the two atoms C 12 and C 13 are the same, but they differ in
weight and they have different nuclear properties, and so they are distinguishable.
3-4
861970041.002.png 861970041.003.png
By using these isotopes of different weights, or even radioactive isotopes like C 14 ,
which provide a more sensitive means for tracing very small quantities, it is pos-
sible to trace the reactions.
Now, we return to the description of enzymes and proteins. All proteins are
not enzymes, but all enzymes are proteins. There are many proteins, such as the
proteins in muscle, the structural proteins which are, for example, in cartilage and
hair, skin, etc., that are not themselves enzymes. However, proteins are a very
characteristic substance of life: first of all they make up all the enzymes, and
second, they make up much of the rest of living material. Proteins have a very
interesting and simple structure. They are a series, or chain, of different ammo
acids. There are twenty different amino acids, and they all can combine with
each other to form chains in which the backbone is CO-NH, etc. Proteins are
nothing but chains of various ones of these twenty amino acids. Each of the amino
acids probably serves some special purpose. Some, for example, have a sulphur
atom at a certain place; when two sulphur atoms are in the same protein, they
form a bond, that is, they tie the chain together at two points and form a loop.
Another has extra oxygen atoms which make it an acidic substance, another has
a basic characteristic. Some of them have big groups hanging out to one side, so -
that they take up a lot of space. One of the amino acids, called prolene, is not
really an amino acid, but imino acid. There is a slight difference, with the result
that when prolene is in the chain, there is a kink in the chain. If we wished to
manufacture a particular protein, we would give these instructions: put one of
those sulphur hooks here; next, add something to take up space; then attach some-
thing to put a kink in the chain. In this way, we will get a complicated-looking
chain, hooked together and having some complex structure; this is presumably
just the manner in which all the various enzymes are made. One of the great tri-
umphs in recent times (since 1960), was at last to discover the exact spatial atomic
arrangement of certain proteins, which involve some fifty-six or sixty amino acids
in a row. Over a thousand atoms (more nearly two thousand, if we count the
hydrogen atoms) have been located in a complex pattern in two proteins. The
first was hemoglobin. One of the sad aspects of this discovery is that we cannot see
anything from the pattern; we do not understand why it works the way it does.
Of course, that is the next problem to be attacked.
Another problem is how do the enzymes know what to be? A red-eyed fly
makes a red-eyed fly baby, and so the information for the whole pattern of enzymes
to make red pigment must be passed from one fly to the next. This is done by a
substance in the nucleus of the cell, not a protein, called DNA (short for des-
oxyribose nucleic acid). This is the key substance which is passed from one cell
to another (for instance, sperm cells consist mostly of DNA) and carries the
information as to how to make the enzymes. DNA is the "blueprint." What does
the blueprint look like and how does it work? First, the blueprint must be able
to reproduce itself. Secondly, it must be able to instruct the protein. Concerning
the reproduction, we might think that this proceeds like cell reproduction. Cells
simply grow bigger and then divide in half. Must it be thus with DNA molecules,
then, that they too grow bigger and divide in half? Every atom certainly does not
grow bigger and divide in half! No, it is impossible to reproduce a molecule
except by some more clever way.
The structure of the substance DNA was studied for a long time, first chemi-
cally to find the composition, and then with x-rays to find the pattern in space.
The result was the following remarkable discovery: The DNA molecule is a pair
of chains, twisted upon each other. The backbone of each of these chains, which
are analogous to the chains of proteins but chemically quite different, is a series
of sugar and phosphate groups, as shown in Fig. 3-2. Now we see how the chain
can contain instructions, for if we could split this chain down the middle, we would
have a series BAADC . . . and every living thing could have a different series.
Thus perhaps, in some way, the specific instructions for the manufacture of pro-
teins are contained in the specific series of the DNA.
Attached to each sugar along the line, and linking the two chains together, are
certain pairs of cross-links. However, they are not all of the same kind; there are
3-5
861970041.004.png
Zgłoś jeśli naruszono regulamin