Introduction_to_Geometric_Measure_Theory-Urs_Lang.pdf
(
297 KB
)
Pobierz
390103083 UNPDF
IntroductiontoGeometricMeasureTheory
UrsLang
April20,2005
Abstract
Thesearethenotestofourone-hourlecturesIdeliveredat
thespringschool“GeometricMeasureTheory:OldandNew”that
tookplaceinLesDiablerets,Switzerland,fromApril3–8,2005(see
http://igat.epfl.ch/diablerets05/
).Thefirstthreeoftheselec-
tureswereintendedtoprovidethefundamentalsofthe“old”theoryof
rectifiablesetsandcurrentsineuclideanspaceasdevelopedbyBesi-
covitch,Federer–Fleming,andothers.Thefourthlecture,independent
ofthepreviousones,discussedsomemetriquespacetechniquesthat
areusefulinconnectionwiththenewmetricapproachtocurrentsby
Ambrosio–Kirchheim.OthershortcoursesweregivenbyG.Alberti,
M.Cs¨ornyei,B.Kirchheim,H.Pajot,andM.Z¨ahle.
Contents
Lecture1:Rectifiability 3
Lipschitzmaps............................. 3
Dierentiability............................. 4
Areaformula.............................. 8
Rectifiablesets.............................10
Lecture2:Normalcurrents 14
Vectors,covectors,andforms.....................14
Currents.................................15
Normalcurrents............................18
Resultsforn-currentsinR
n
......................21
Lecture3:Integralcurrents 22
Integerrectifiablecurrents.......................22
Thecompactnesstheorem.......................23
Minimizingcurrents..........................23
1
Lecture4:Somemetricspacetechniques 27
Embeddings...............................27
Gromov–Hausdorconvergence....................28
Ultralimits ...............................31
References 34
2
Lecture1:Rectifiability
Lipschitzmaps
LetX,Ybemetricspaces,andlet2[0,1).Amapf:X!Yis-
Lipschitzif
d(f(x),f(x
0
))d(x,x
0
)forallx,x
0
2X;
fisLipschitzif
Lip(f):=inf{2[0,1):fis-Lipschitz}<1.
Thefollowingbasicextensionresultholds,see[McS]andthefootnote
in[Whit].
1.1Lemma(McShane,Whitney)
SupposeXisametricspaceandAX.
(1)Forn2N,every-Lipschitzmapf:A!R
n
admitsa
p
n-Lipschitz
n
.
(2)ForanysetJ,every-Lipschitzmapf:A!l
1
(J)hasa-Lipschitz
extension
¯
f:X!l
1
(J).
Proof:(1)Forn=1,put
¯
f(x):=inf{f(a)+d(a,x):a2A}.
Forn2,f=(f
1
,...,f
n
),extendeachf
i
separately.
(2)Forf=(f
j
)
j2J
,extendeachf
j
separately.
2
In(1),thefactor
p
ncannotbereplacedbyaconstant<n
1/4
,cf.[JohLS]
and[Lan].Inparticular,LipschitzmapsintoaHilbertspaceYcannotbe
extendedingeneral.However,ifXisitselfaHilbertspace,onehasagain
anoptimalresult:
1.2Theorem(Kirszbraun,Valentine)
IfX,YareHilbertspaces,AX,andf:A!Yis-Lipschitz,thenfhas
a-Lipschitzextension
¯
f:X!Y.
m
intoacompletemetricspaceY;itisusefulinconnection
withthedefinitionofrectifiablesets(Def.1.13).WecallametricspaceY
Lipschitzk-connectedifthereisaconstantc1suchthatevery-Lipschitz
mapf:S
k
!Yadmitsac-Lipschitzextension
¯
f:B
k+1
!Y;hereS
k
and
B
k+1
denotetheunitsphereandclosedballinR
k+1
,endowedwiththein-
ducedmetric.EveryBanachspaceisLipschitzk-connectedforallk0.
ThesphereS
n
isLipschitzk-connectedfork=0,...,n−1.
3
extension
¯
f:X!R
See[Kirs],[Val],or[Fed,2.10.43].Ageneralizationtometricspaceswith
curvatureboundswasgivenin[LanS].
ThenextresultcharacterizestheextendabilityofpartiallydefinedLips-
chitzmapsfromR
m
)
LetYbeacompletemetricspace,andletm2N.Thenthefollowing
statementsareequivalent:
(1)YisLipschitzk-connectedfork=0,...,m−1.
(2)Thereisaconstantcsuchthatevery-Lipschitzmapf:A!Y,
AR
m
,hasac-Lipschitzextension
¯
f:R
m
!Y.
TheideaoftheproofgoesbacktoWhitney[Whit].Compare[Alm1,
Thm.(1.2)]and[JohLS].
Proof:Itisclearthat(2)implies(1).Nowsupposethat(1)holds,and
letf:A!Ybea-Lipschitzmap,AR
m
isoftheformx+[0,2
k
]
m
forsomek2Zandx2(2
k
Z)
m
.DenotebyCthefamilyofalldyadiccubes
m
\Athataremaximal(withrespecttoinclusion)subjecttothe
condition
diamC2d(A,C).
Theyhavepairwisedisjointinteriors,coverR
m
\A,andsatisfy
d(A,C)<2diamC,
forotherwisethenextbiggerdyadiccubeC
0
containingCwouldstillfulfill
diamC
0
=2diamC2(d(A,C)−diamC)2d(A,C
0
).
m
thek-skeletonofthiscubicaldecomposition.Extendf
toaLipschitzmapf
0
:A[
0
!Ybyprecomposingfwithanearestpoint
retractionA[
0
!A.Then,fork=0,...,m−1,successivelyextendf
k
tof
k+1
:A[
k+1
!YbymeansoftheLipschitzk-connectednessofY.As
A[
m
=R
m
,
¯
f:=f
m
isthedesiredextensionoff.
2
Dierentiability
Recallthefollowingdefinitions.
1.4Definition(GˆateauxandFr´echetdierential)
SupposeX,YareBanachspaces,fmapsanopensetUXintoY,and
x2U.
(1)ThemapfisGˆateauxdierentiableatxifthedirectionalderivative
D
v
f(x)existsforeveryv2Xandifthereisacontinuouslinearmap
L:X!Ysuchthat
L(v)=D
v
f(x)forallv2X.
ThenListheGˆateauxdierentialoffatx.
4
1.3Theorem(LipschitzmapsonR
m
.AsYiscomplete,assume
w.l.o.g.thatAisclosed.AdyadiccubeinR
CR
Denoteby
k
R
(2)Themapfis(Fr´echet)dierentiableatxifthereisacontinuouslinear
mapL:X!Ysuchthat
lim
v!0
f(x+v)−f(x)−L(v)
kvk
=0.
ThenL=:Df
x
isthe(Fr´echet)dierentialoffatx.
ThemapfisFr´echetdierentiableatxifisGˆateauxdierentiable
atxandthelimitin
L(u)=lim
t!0
(f(x+tu)−f(x))/t
existsuniformlyforuintheunitsphereofX,i.e.forall>0thereisa
>0suchthat
kf(x+tu)−f(x)−tL(u)k|t|
whenever|t|andu2S(0,1)X.
1.5Lemma(dierentiableLipschitzmaps)
SupposeYisaBanachspace,f:R
m
!YisLipschitz,x2R
m
,Disa
m
!Yislinear,
andL(u)=D
u
f(x)forallu2D.ThenfisFr´echetdierentiableatxwith
dierentialDf
x
=L.
m
!YisLipschitzandGˆateauxdierentiableat
x,thenfisFr´echetdierentiableatx.
Proof:Let>0.ChooseafinitesetD
0
Dsuchthatforeveryu2S
m−1
thereisau
0
2D
0
with|u−u
0
|.Thenthereisa>0suchthat
kf(x+tu
0
)−f(x)−tL(u
0
)k|t|
whenever|t|andu
0
2D
0
.Givenu2S
m−1
,picku
0
2D
0
with|u−u
0
|;
then
kf(x+tu)−f(x)−tL(u)k
|t|+kf(x+tu)−f(x+tu
0
)k+|t|kL(u−u
0
)k
(1+Lip(f)+kLk)|t|
forall|t|.
2
1.6Theorem(Rademacher)
EveryLipschitzmapf:R
m
!R
n
isdierentiableatL
m
-almostallpoints
inR
m
.
Thiswasoriginallyprovedin[Rad].
5
densesubsetofS
m−1
,D
u
f(x)existsforeveryu2D,L:R
Inparticular,iff:R
Plik z chomika:
Kuya
Inne pliki z tego folderu:
A_Brief_Introduction_to_Measure_Theory_and_Integration-Richard_Bass.pdf
(194 KB)
Distributions-Andras_Vasy.pdf
(76 KB)
Distributions_Generalized_Functions-Ivan_Wilde.pdf
(430 KB)
Introduction_to_Generalized_Functions_with_Applications_in_Aerodynamics_and_Aeroacoustics-Farasat.pdf
(2310 KB)
Introduction_to_Geometric_Measure_Theory-Urs_Lang.pdf
(297 KB)
Inne foldery tego chomika:
algebra
analysis
calculus
complex
computation
Zgłoś jeśli
naruszono regulamin