Introduction_to_Geometric_Measure_Theory-Urs_Lang.pdf

(297 KB) Pobierz
390103083 UNPDF
IntroductiontoGeometricMeasureTheory
UrsLang
April20,2005
Abstract
Thesearethenotestofourone-hourlecturesIdeliveredat
thespringschool“GeometricMeasureTheory:OldandNew”that
tookplaceinLesDiablerets,Switzerland,fromApril3–8,2005(see
http://igat.epfl.ch/diablerets05/ ).Thefirstthreeoftheselec-
tureswereintendedtoprovidethefundamentalsofthe“old”theoryof
rectifiablesetsandcurrentsineuclideanspaceasdevelopedbyBesi-
covitch,Federer–Fleming,andothers.Thefourthlecture,independent
ofthepreviousones,discussedsomemetriquespacetechniquesthat
areusefulinconnectionwiththenewmetricapproachtocurrentsby
Ambrosio–Kirchheim.OthershortcoursesweregivenbyG.Alberti,
M.Cs¨ornyei,B.Kirchheim,H.Pajot,andM.Z¨ahle.
Contents
Lecture1:Rectifiability 3
Lipschitzmaps............................. 3
Dierentiability............................. 4
Areaformula.............................. 8
Rectifiablesets.............................10
Lecture2:Normalcurrents 14
Vectors,covectors,andforms.....................14
Currents.................................15
Normalcurrents............................18
Resultsforn-currentsinR
n ......................21
Lecture3:Integralcurrents 22
Integerrectifiablecurrents.......................22
Thecompactnesstheorem.......................23
Minimizingcurrents..........................23
1
Lecture4:Somemetricspacetechniques 27
Embeddings...............................27
Gromov–Hausdorconvergence....................28
Ultralimits ...............................31
References 34
2
Lecture1:Rectifiability
Lipschitzmaps
LetX,Ybemetricspaces,andlet2[0,1).Amapf:X!Yis-
Lipschitzif
d(f(x),f(x 0 ))d(x,x 0 )forallx,x 0 2X;
fisLipschitzif
Lip(f):=inf{2[0,1):fis-Lipschitz}<1.
Thefollowingbasicextensionresultholds,see[McS]andthefootnote
in[Whit].
1.1Lemma(McShane,Whitney)
SupposeXisametricspaceandAX.
(1)Forn2N,every-Lipschitzmapf:A!R
n admitsa p n-Lipschitz
n .
(2)ForanysetJ,every-Lipschitzmapf:A!l 1 (J)hasa-Lipschitz
extension ¯ f:X!l 1 (J).
Proof:(1)Forn=1,put
¯ f(x):=inf{f(a)+d(a,x):a2A}.
Forn2,f=(f 1 ,...,f n ),extendeachf i separately.
(2)Forf=(f j ) j2J ,extendeachf j separately. 2
In(1),thefactor p ncannotbereplacedbyaconstant<n 1/4 ,cf.[JohLS]
and[Lan].Inparticular,LipschitzmapsintoaHilbertspaceYcannotbe
extendedingeneral.However,ifXisitselfaHilbertspace,onehasagain
anoptimalresult:
1.2Theorem(Kirszbraun,Valentine)
IfX,YareHilbertspaces,AX,andf:A!Yis-Lipschitz,thenfhas
a-Lipschitzextension ¯ f:X!Y.
m intoacompletemetricspaceY;itisusefulinconnection
withthedefinitionofrectifiablesets(Def.1.13).WecallametricspaceY
Lipschitzk-connectedifthereisaconstantc1suchthatevery-Lipschitz
mapf:S k !Yadmitsac-Lipschitzextension ¯ f:B k+1 !Y;hereS k and
B k+1 denotetheunitsphereandclosedballinR
k+1 ,endowedwiththein-
ducedmetric.EveryBanachspaceisLipschitzk-connectedforallk0.
ThesphereS n isLipschitzk-connectedfork=0,...,n−1.
3
extension ¯ f:X!R
See[Kirs],[Val],or[Fed,2.10.43].Ageneralizationtometricspaceswith
curvatureboundswasgivenin[LanS].
ThenextresultcharacterizestheextendabilityofpartiallydefinedLips-
chitzmapsfromR
390103083.001.png
 
m )
LetYbeacompletemetricspace,andletm2N.Thenthefollowing
statementsareequivalent:
(1)YisLipschitzk-connectedfork=0,...,m−1.
(2)Thereisaconstantcsuchthatevery-Lipschitzmapf:A!Y,
AR
m ,hasac-Lipschitzextension ¯ f:R
m !Y.
TheideaoftheproofgoesbacktoWhitney[Whit].Compare[Alm1,
Thm.(1.2)]and[JohLS].
Proof:Itisclearthat(2)implies(1).Nowsupposethat(1)holds,and
letf:A!Ybea-Lipschitzmap,AR
m isoftheformx+[0,2 k ] m
forsomek2Zandx2(2 k
Z) m .DenotebyCthefamilyofalldyadiccubes
m \Athataremaximal(withrespecttoinclusion)subjecttothe
condition
diamC2d(A,C).
Theyhavepairwisedisjointinteriors,coverR
m \A,andsatisfy
d(A,C)<2diamC,
forotherwisethenextbiggerdyadiccubeC 0 containingCwouldstillfulfill
diamC 0 =2diamC2(d(A,C)−diamC)2d(A,C 0 ).
m thek-skeletonofthiscubicaldecomposition.Extendf
toaLipschitzmapf 0 :A[ 0 !Ybyprecomposingfwithanearestpoint
retractionA[ 0 !A.Then,fork=0,...,m−1,successivelyextendf k
tof k+1 :A[ k+1 !YbymeansoftheLipschitzk-connectednessofY.As
A[ m =R
m , ¯ f:=f m isthedesiredextensionoff.
2
Dierentiability
Recallthefollowingdefinitions.
1.4Definition(GˆateauxandFr´echetdierential)
SupposeX,YareBanachspaces,fmapsanopensetUXintoY,and
x2U.
(1)ThemapfisGˆateauxdierentiableatxifthedirectionalderivative
D v f(x)existsforeveryv2Xandifthereisacontinuouslinearmap
L:X!Ysuchthat
L(v)=D v f(x)forallv2X.
ThenListheGˆateauxdierentialoffatx.
4
1.3Theorem(LipschitzmapsonR
m .AsYiscomplete,assume
w.l.o.g.thatAisclosed.AdyadiccubeinR
CR
Denoteby k R
(2)Themapfis(Fr´echet)dierentiableatxifthereisacontinuouslinear
mapL:X!Ysuchthat
lim
v!0
f(x+v)−f(x)−L(v)
kvk =0.
ThenL=:Df x isthe(Fr´echet)dierentialoffatx.
ThemapfisFr´echetdierentiableatxifisGˆateauxdierentiable
atxandthelimitin
L(u)=lim
t!0 (f(x+tu)−f(x))/t
existsuniformlyforuintheunitsphereofX,i.e.forall>0thereisa
>0suchthat
kf(x+tu)−f(x)−tL(u)k|t|
whenever|t|andu2S(0,1)X.
1.5Lemma(dierentiableLipschitzmaps)
SupposeYisaBanachspace,f:R
m !YisLipschitz,x2R
m ,Disa
m !Yislinear,
andL(u)=D u f(x)forallu2D.ThenfisFr´echetdierentiableatxwith
dierentialDf x =L.
m !YisLipschitzandGˆateauxdierentiableat
x,thenfisFr´echetdierentiableatx.
Proof:Let>0.ChooseafinitesetD 0 Dsuchthatforeveryu2S m−1
thereisau 0 2D 0 with|u−u 0 |.Thenthereisa>0suchthat
kf(x+tu 0 )−f(x)−tL(u 0 )k|t|
whenever|t|andu 0 2D 0 .Givenu2S m−1 ,picku 0 2D 0 with|u−u 0 |;
then
kf(x+tu)−f(x)−tL(u)k
|t|+kf(x+tu)−f(x+tu 0 )k+|t|kL(u−u 0 )k
(1+Lip(f)+kLk)|t|
forall|t|.
2
1.6Theorem(Rademacher)
EveryLipschitzmapf:R
m !R
n isdierentiableatL m -almostallpoints
inR
m .
Thiswasoriginallyprovedin[Rad].
5
densesubsetofS m−1 ,D u f(x)existsforeveryu2D,L:R
Inparticular,iff:R
Zgłoś jeśli naruszono regulamin