Introduction_to_Generalized_Functions_with_Applications_in_Aerodynamics_and_Aeroacoustics-Farasat.pdf

(2310 KB) Pobierz
584761192 UNPDF
NASA Technical Paper 3428
Introduction to Generalized Functions With
Applications in Aerodynamics and
Aeroacoustics
F. Farassat
Langley Research Center Hampton, Virginia
Corrected Copy (April 1996)
National Aeronautics and Space Administration
Langley Research Center Hampton, Virginia 23681-0001
May 1994
584761192.003.png 584761192.004.png
ADDENDUM
( ƒ ) in a Multidimensional Space,
Journal of Sound and Vibration , Volume 230, No. 2, February 17, 2000,
p. 460-462
ftp://techreports.larc.nasa.gov/pub/techreports/larc/2000/jp/NASA-2000-jsv-ff.ps.Z
http://techreports.larc.nasa.gov/ltrs/PDF/2000/jp/NASA-2000-jsv-ff.pdf
F. Farassat: The Integration of
 
Contents
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. What Are Generalized Functions? . . . . . . . . . . . . . . . . . . . . . . 2
2.1. Schwartz Functional Approach . . . . . . . . . . . . . . . . . . . . . . 2
2.2. How Can Generalized Functions Be Introduced in Mathematics? . . . . . . . 6
3. Some Denitions and Results . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Generalized Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3. Multidimensional Delta Functions . . . . . . . . . . . . . . . . . . . . 19
3.4. Finite Part of Divergent Integrals . . . . . . . . . . . . . . . . . . . . 24
4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Aerodynamic Applications . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Aeroacoustic Applications . . . . . . . . . . . . . . . . . . . . . . . 34
5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
iii
Symbols
A(x) coecient of second order term of linear ordinary dierential equation
A() lower limit of integral in Leibni z rule depending on parameter
a constant
BC, BC 1 , BC 2 boundary conditions
B(x)
coecient of rst order term in second order linear ordinary dierential equation
B()
upper limit of integral in Leibniz rule depending on parameter
b
constant
C; C 1 ; C 2
constants
C(x)
coecient of zero order term (the unknown function) in second order linear
ordinary dierential equation
c
constant, also speed of sound
D
space of innitely dierentiable functions with bounded support (test functions)
D 0
space of generalized functions based on D
E 1 ; E 2
expressions in integrands of Kirchho formula for moving surfaces
E()
function dened by equation (3.70)
E h
shift operator E h f(x) = f(x+ h)
E ij
viscous stress tensor
F
in F [] , denes linear functional on test function space; generalized function
F (y; x; t)
= [f(y; )] ret = f(y; t c )
F (y; x; t)
= [f(y; )] ret = f(y; t c )
f(x); f(x)
arbitrary ordinary functions
f 1 (x)
arbitrary function
f i ()
components of moving compact force, i = 1 to 3
f(x; t)
equation of moving surface dened as f(x; t) = 0, f > 0 outside surface
f(x; t)
moving surface dened by f(x; t) = 0 intersection of which with f(x; t) = 0
denes edge of open surface f = 0, f > 0
g(x; y); g(x; y) Green’s function
g = t + c
g 1 (x; y); g 2 (x; y) dene Green’s function for x< y and x > y, respectively
g (2)
determinant of coecients of rst fundamental form of surface
g(x); g(x)
arbitrary functions
in H[], linear functional R 0
H
(x) dx based on Heaviside function
H f
local mean curvature of surface f = 0
H(x; )
function dened by equation (3.71)
h
constant
h(x)
Heaviside function
v
584761192.005.png 584761192.001.png
h " (x)
function of x indexed by continuou s parameter "
I
interval on real line, expression given by integral; expression
= p 1; index
i
j
index
K
in K[], denes l inear functional on test function space; generalized function
k
nonnegative integer
k(x); k(x; t)
equation of shock or wake surface given by k = 0
L
in dL, length parameter of edge of surface given by F = F = 0
in ‘u, second order linear ordinary dierential equation
M
Mach number vector
M n
= M n; local normal Mach number
M r
= M r
M
= M
m
index of summation of Fourier series
N
unit normal to F = 0
N
unit normal to F = 0
n
nonnegative integer
n
local unit outward normal to surface
n 0
local unit inward normal to surface
n 1
vector (n 1 , 0, 0) based on n = (n 1 ; n 2 ; n 3 )
o
in o("), smal l order of "
PV
principal value
P ij
compressive stress tensor
p
blade surface pressure
p 0
acoustic pressure
Q(x; t); Q(x; t) source strength of inhomogeneous term of wave equation
r
= jx yj
r i
components of vector r = x y, i = 1 to 3
r i
components of unit radiation vector
r , i = 1 to 3
S
in dS, surface area of given surface; space of rapidly decreasing test functions
S 0
space of generalized functions based on S
S k
portion of surface k = 0 inside surface @
s(t)
position vector of compact force in motion
T i j
Lighthill stress tensor
t
variable; time variable
t 1
unit vector in direction of projection of r onto local tangent plane to f(x; t) = 0
vi
r
584761192.002.png
 
Zgłoś jeśli naruszono regulamin