Functions_of_a_Complex_Variable-Chaoha.pdf

(278 KB) Pobierz
584790369 UNPDF
LectureNote
2301308FunctionsofAComplexVariable
PhichetChaoha
DepartmentofMathematics,FacultyofScience,Chulalongkorn
University,Bangkok10330,Thailand
Contents
Chapter1.ComplexNumbersandFunctions 5
Chapter2.TopologyofC:AFastGlimpse 7
Chapter3.DierentiabilityandAnalyticity 13
Chapter4.ElementaryFunctions 15
Chapter5.LineIntegrals 17
Chapter6.CauchyIntegralTheoremandApplications 21
Chapter7.SequencesandSeriesofComplexFunctions 27
Chapter8.Singularity 35
Bibliography
39
3
CHAPTER1
ComplexNumbersandFunctions
=C−{0}.NoticethatRC
(bylettingb=0)andthefunction:C!R 2 givenby(a+bi)=(a,b)isclearly
abijection.WeusuallyusethisbijectiontoidentifyCwithR 2 (i.e.,a+bi=(a,b))
whileRcanbeviewedastheX-axisofR 2 .Inthisnote,wewillregarda+bias
thestandardformand(a,b)asthevectorformofacomplexnumber.
SomeNotations:Foracomplexnumberz=a+bi,
•therealpartofzisRe(z)=a,
•theimaginarypart of zisIm(z)=b,
•theconjugateofzisz=a −bi,
•themodulusofzis|z|=
a 2 +b 2 ,
•anargumentofz6=0isananglebetweenthevectors(0,1)and(a,b)
(viewinginR 2 )measuredinthecounter-clockwisedirection.Noticethat
arg(z)ismultivalued.Weusuallycalltheargumentthatliesintheinterval
(−,]theprincipalargumentofzanddenoteitbyArg(z).
OtherFormsofComplexNumbers:Foracomplexnumberz=a+bi,
letr=|z|and=arg(z).[Eulerformula:e i =cos+isin.]
•Thepolarformofzisz=r(cos+isin).
•Theexponentialformofzisz=re i .
Noticethatbothpolarformandexponentialformofacomplexnumberzisnot
uniqueandwealwayshave|cos+isin|=|e i |=1.
ComplexAlgebra:Fortwocomplexnumbersz=a+biandw=c+di,
wedefine
p
z+w=(a+c)+(b+d)i
and
z·w=(ac−bd)+(ad+bc)i.
a 2 +b 2 iasthemultiplicativeinverseofa+bi6=0.Asusual,wewill
denotetheadditiveinverseandthemultiplicativeinverse(ifexists)ofzby−zand
z −1 (or 1 z )respectively.
Intermsofpolarandexponentialforms,ifz 1 =r 1 (cos 1 +isin 1 )=r 1 e i 1
andz 2 =r 2 (cos 2 +isin 2 )=r 2 e i 2 ,onecanshowthat
a 2 +b 2 b
z 1 z 2 =r 1 r 2 (cos( 1 + 2 )+isin( 1 + 2 ))=r 1 r 2 e in( 1 + 2 )
5
Acomplexnumberisanexpressionoftheforma+bi(ora+ib)where
a,b2Randiisasymbolsatisfyingtherelationi 2 =−1.Thesetofallcomplex
numberswillbedenotedbyCandwealsoletC
Itisstraightforwardtoverifythat(C,+,·)isafieldwith0astheadditive
identity,1asthemultiplicativeidentity,−a−biastheadditiveinverseofa+bi
and a
584790369.001.png
Zgłoś jeśli naruszono regulamin