irlr3915.pdf

(583 KB) Pobierz
IRLR_U3915.pmd
PD - 94543
AUTOMOTIVE MOSFET
IRLR3915
IRLU3915
HEXFET ® Power MOSFET
Features
Advanced Process Technology
Ultra Low On-Resistance
D
175°C Operating Temperature
V DSS = 55V
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
R DS(on) = 14m
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this product are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features com-
bine to make this design an extremely efficient and
reliable device for use in Automotive applications
and a wide variety of other applications.
S
I D = 30A
D-Pak
IRLR3915
I-Pak
IRLU3915
Absolute Maximum Ratings
Parameter
Max.
Units
I D @ T C = 25°C
Continuous Drain Current, V GS @ 10V (Silicon limited)
61
I D @ T C = 100°C
Continuous Drain Current, V GS @ 10V (See Fig.9)
43
A
I D @ T C = 25°C
Continuous Drain Current, V GS @ 10V (Package limited)
30
I DM
Pulsed Drain Current
240
P D @T C = 25°C
Power Dissipation
120
W
Linear Derating Factor
0.77
W/°C
V GS
Gate-to-Source Voltage
± 16
V
E AS
Single Pulse Avalanche Energy
200
mJ
E AS (6 sigma)
Single Pulse Avalanche Energy Tested Value
600
I AR
Avalanche Current
See Fig.12a, 12b, 15, 16
A
E AR
Repetitive Avalanche Energy
mJ
T J
Operating Junction and
-55 to + 175
T STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
Typ.
Max.
Units
R θ JC
Junction-to-Case
–––
1.3
R θ JA
Junction-to-Ambient (PCB mount)
–––
50
°C/W
R θ JA
Junction-to-Ambient–––
110
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com
1
519852991.026.png 519852991.027.png 519852991.028.png 519852991.029.png
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V (BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V V GS = 0V, I D = 250µA
V (BR)DSS / T J Breakdown Voltage Temp. Coefficient ––– 0.057 ––– V/°C Reference to 25°C, I D = 1mA
R DS(on)
Static Drain-to-Source On-Resistance –––
12
14
m
V GS = 10V, I D = 30A
–––
14
17
V GS = 5.0V, I D = 26A
V GS(th)
Gate Threshold Voltage
1.0 ––– 3.0
V
V DS = 10V, I D = 250µA
g fs
Forward Transconductance
42
––– –––
S
V DS = 25V, I D = 30A
I DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V DS = 55V, V GS = 0V
––– ––– 250
V DS = 55V, V GS = 0V, T J = 125°C
I GSS
Gate-to-Source Forward Leakage
––– ––– 200
nA
V GS = 16V
Gate-to-Source Reverse Leakage
––– ––– -200
V GS = -16V
Q g
Total Gate Charge
–––
61
92
I D = 30A
Q gs
Gate-to-Source Charge
––– 9.0 14
nC V DS = 44V
Q gd
Gate-to-Drain ("Miller") Charge
–––
17
25
V GS = 10V
t d(on)
Turn-On Delay Time
––– 7.4 –––
ns
V DD = 28V
t r
Rise Time
–––
51 –––
I D = 30A
t d(off)
Turn-Off Delay Time
–––
83 –––
R G = 8.5
t f
Fall Time
––– 100 –––
V GS = 10V
Between lead,
L D
Internal Drain Inductance
–––
4.5
–––
D
nH 6mm (0.25in.)
from package
and center of die contact
L S
Internal Source Inductance
–––
7.5
–––
G
S
C iss
Input Capacitance
––– 1870 –––
V GS = 0V
C oss
Output Capacitance
––– 390 –––
V DS = 25V
C rss
Reverse Transfer Capacitance
–––
74 –––
pF ƒ = 1.0MHz, See Fig. 5
C oss
Output Capacitance
––– 2380 –––
V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz
C oss
Output Capacitance
––– 290 –––
V GS = 0V, V DS = 44V, ƒ = 1.0MHz
C oss eff.
Effective Output Capacitance
––– 540 –––
V GS = 0V, V DS = 0V to 44V
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I S
Continuous Source Current
MOSFET symbol
D
––– –––
61
(Body Diode)
showing the
I SM
Pulsed Source Current
integral reverse
G
––– –––
240
(Body Diode)
p-n junction diode.
S
V SD
Diode Forward Voltage
––– ––– 1.3
V
T J = 25°C, I S = 30A, V GS = 0V
t rr
Reverse Recovery Time
––– 62
93
ns T J = 25°C, I F = 30A, V DD = 25xjkl V
Q rr
Reverse Recovery Charge
––– 110 170
nC di/dt = 100A/µs
t on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L S +L D )
2
www.irf.com
519852991.001.png 519852991.002.png
10000
1000
1000
VGS
TOP 15V
10V
5.0V
3.0V
2.7V
2.5V
2.25V
VGS
TOP 15V
10V
5.0V
3.0V
2.7V
2.5V
2.25V
100
100
10
BOTTOM
2.0V
BOTTOM
2.0V
10
1
2.0V
0.1
2.0V
1
0.01
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 175°C
0.001
0.1
0.1
1
10
100
1000
0.1
1
10
100
1000
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
70
T J = 25°C
60
T J = 175°C
100.00
T J = 25°C
50
40
10.00
T J = 175°C
30
1.00
20
V DS = 25V
20µs PULSE WIDTH
10
0.10
0
1.0
3.0 5.0 7.0 9.0 11.0 13.0 15.0
V GS , Gate-to-Source Voltage (V)
0
10
20
30
40
50
60
I D ,Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
vs. Drain Current
www.irf.com
3
519852991.003.png 519852991.004.png 519852991.005.png 519852991.006.png 519852991.007.png 519852991.008.png 519852991.009.png 519852991.010.png 519852991.011.png 519852991.012.png 519852991.013.png 519852991.014.png
 
100000
12
V GS = 0V, f = 1 MHZ
C iss = C gs + C gd , C ds SHORTED
C rss = C gd
C oss = C ds + C gd
I =
D
30A
V
= 44V
DS
V
DS
= 27V
10
V
= 11V
DS
10000
8
C iss
1000
6
C oss
4
100
C rss
2
10
0
1
10
100
0
10
20
30
40
50
60
70
V DS , Drain-to-Source Voltage (V)
Q , Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100
T = 175 C
J
°
10
100µsec
T = 25 C
J
°
10
1msec
1
V = 0 V
GS
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
1
0.0
0.5
1.0
1.5
2.0
1
10
100
1000
V ,Source-to-Drain Voltage (V)
SD
V DS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
G
519852991.015.png 519852991.016.png 519852991.017.png 519852991.018.png 519852991.019.png 519852991.020.png 519852991.021.png
70
2.5
LIMITED BY PACKAGE
I =
61A
60
2.0
50
40
1.5
30
1.0
20
0.5
10
V
GS
=
10V
0.0
0
25
50
75
100
125
150
175
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
°
T , Junction Temperature
( C)
°
T , Case Temperature ( C)
J
C
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Normalized On-Resistance
vs. Temperature
10
1
D = 0.50
0.20
0.10
P
DM
0.1
0.05
1
0.02
SINGLE PULSE
(THERMAL RESPONSE)
0.01
2
Notes:
1. Duty factor D =
t / t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.01
0.00001
0.0001
0.001
0.01
0.1
1
t , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
D
t
t
1
1
519852991.022.png 519852991.023.png 519852991.024.png 519852991.025.png
Zgłoś jeśli naruszono regulamin